1,660 research outputs found

    Inflationary Reheating in Grand Unified Theories

    Get PDF
    Grand unified theories may display multiply interacting fields with strong coupling dynamics. This poses two new problems: (1) What is the nature of chaotic reheating after inflation, and (2) How is reheating sensitive to the mass spectrum of these theories ? We answer these questions in two interesting limiting cases and demonstrate an increased efficiency of reheating which strongly enhances non-thermal topological defect formation, including monopoles and domain walls. Nevertheless, the large fluctuations may resolve this monopole problem via a modified Dvali-Liu-Vachaspati mechanism in which non-thermal destabilsation of discrete symmetries occurs at reheating.Comment: 4 pages, 5 ps figures - 1 colour, Revtex. Further (colour & 3-D) figures available from http://www.sissa.it/~bassett/reheating/ . Matched to version to appear in Phys. Rev. let

    Black hole production in tachyonic preheating

    Full text link
    We present fully non-linear simulations of a self-interacting scalar field in the early universe undergoing tachyonic preheating. We find that density perturbations on sub-horizon scales which are amplified by tachyonic instability maintain long range correlations even during the succeeding parametric resonance, in contrast to the standard models of preheating dominated by parametric resonance. As a result the final spectrum exhibits memory and is not universal in shape. We find that throughout the subsequent era of parametric resonance the equation of state of the universe is almost dust-like, hence the Jeans wavelength is much smaller than the horizon scale. If our 2D simulations are accurate reflections of the situation in 3D, then there are wide regions of parameter space ruled out by over-production of black holes. It is likely however that realistic parameter values, consistent with COBE/WMAP normalisation, are safetly outside this black hole over-production region.Comment: 6pages, 7figures, figures correcte

    Massless Metric Preheating

    Get PDF
    Can super-Hubble metric perturbations be amplified exponentially during preheating ? Yes. An analytical existence proof is provided by exploiting the conformal properties of massless inflationary models. The traditional conserved quantity \zeta is non-conserved in many regions of parameter space. We include backreaction through the homogeneous parts of the inflaton and preheating fields and discuss the role of initial conditions on the post-preheating power-spectrum. Maximum field variances are strongly underestimated if metric perturbations are ignored. We illustrate this in the case of strong self-interaction of the decay products. Without metric perturbations, preheating in this case is very inefficient. However, metric perturbations increase the maximum field variances and give alternative channels for the resonance to proceed. This implies that metric perturbations can have a large impact on calculations of relic abundances of particles produced during preheating.Comment: 8 pages, 4 colour figures. Version to appear in Phys. Rev. D. Contains substantial new analysis of the ranges of parameter space for which large changes to the inflation-produced power spectrum are expecte

    Reheating and turbulence

    Full text link
    We show that the ''turbulent'' particle spectra found in numerical simulations of the behavior of matter fields during reheating admit a simple interpretation in terms of hydrodynamic models of the reheating period. We predict a particle number spectrum nkkαn_{k}\propto k^{-\alpha} with α2\alpha \sim 2 for k0.k\to 0.Comment: 10 pages, one figure included in tex

    Dystrophin is required for the formation of stable muscle attachments in the zebrafish embryo

    Get PDF
    A class of recessive lethal zebrafish mutations has been identified in which normal skeletal muscle differentiation is followed by a tissue-specific degeneration that is reminiscent of the human muscular dystrophies. Here, we show that one of these mutations, sapje, disrupts the zebrafish orthologue of the X-linked human Duchenne muscular dystrophy (DMD) gene. Mutations in this locus cause Duchenne or Becker muscular dystrophies in human patients and are thought to result in a dystrophic pathology through disconnecting the cytoskeleton from the extracellular matrix in skeletal muscle by reducing the level of dystrophin protein at the sarcolemma. This is thought to allow tearing of this membrane, which in turn leads to cell death. Surprisingly, we have found that the progressive muscle degeneration phenotype of sapje mutant zebrafish embryos is caused by the failure of embryonic muscle end attachments. Although a role for dystrophin in maintaining vertebrate myotendinous junctions (MTJs) has been postulated previously and MTJ structural abnormalities have been identified in the Dystrophin-deficient mdx mouse model, in vivo evidence of pathology based on muscle attachment failure has thus far been lacking. This zebrafish mutation may therefore provide a model for a novel pathological mechanism of Duchenne muscular dystrophy and other muscle diseases

    Strong quantum violation of the gravitational weak equivalence principle by a non-Gaussian wave-packet

    Full text link
    The weak equivalence principle of gravity is examined at the quantum level in two ways. First, the position detection probabilities of particles described by a non-Gaussian wave-packet projected upwards against gravity around the classical turning point and also around the point of initial projection are calculated. These probabilities exhibit mass-dependence at both these points, thereby reflecting the quantum violation of the weak equivalence principle. Secondly, the mean arrival time of freely falling particles is calculated using the quantum probability current, which also turns out to be mass dependent. Such a mass-dependence is shown to be enhanced by increasing the non-Gaussianity parameter of the wave packet, thus signifying a stronger violation of the weak equivalence principle through a greater departure from Gaussianity of the initial wave packet. The mass-dependence of both the position detection probabilities and the mean arrival time vanish in the limit of large mass. Thus, compatibility between the weak equivalence principle and quantum mechanics is recovered in the macroscopic limit of the latter. A selection of Bohm trajectories is exhibited to illustrate these features in the free fall case.Comment: 11 pages, 7 figure

    Lensing and caustic effects on cosmological distances

    Get PDF
    We consider the changes which occur in cosmological distances due to the combined effects of some null geodesics passing through low-density regions while others pass through lensing-induced caustics. This combination of effects increases observed areas corresponding to a given solid angle even when averaged over large angular scales, through the additive effect of increases on all scales, but particularly on micro-angular scales; however angular sizes will not be significantly effected on large angular scales (when caustics occur, area distances and angular-diameter distances no longer coincide). We compare our results with other works on lensing, which claim there is no such effect, and explain why the effect will indeed occur in the (realistic) situation where caustics due to lensing are significant. Whether or not the effect is significant for number counts depends on the associated angular scales and on the distribution of inhomogeneities in the universe. It could also possibly affect the spectrum of CBR anisotropies on small angular scales, indeed caustics can induce a non-Gaussian signature into the CMB at small scales and lead to stronger mixing of anisotropies than occurs in weak lensing.Comment: 28 pages, 6 ps figures, eps

    The conceptual and practical ethical dilemmas of using health discussion board posts as research data.

    Get PDF
    Increasing numbers of people living with a long-term health condition are putting personal health information online, including on discussion boards. Many discussion boards contain material of potential use to researchers; however, it is unclear how this information can and should be used by researchers. To date there has been no evaluation of the views of those individuals sharing health information online regarding the use of their shared information for research purposes

    Genetic and pharmacological targeting of transcriptional repression in resistance to thyroid hormone alpha

    Get PDF
    Background Thyroid hormones act in bone and cartilage via thyroid hormone receptor α (TRα). In the absence of T3, TRα interacts with co-repressors, including nuclear receptor co-repressor-1 (NCoR1), which recruit histone deacetylases (HDACs) and mediate transcriptional repression. Dominant-negative mutations of TRα cause resistance to thyroid hormone α (RTHα; OMIM 614450), characterized by excessive repression of T3 target genes leading to delayed skeletal development, growth retardation and bone dysplasia. Treatment with thyroxine has been of limited benefit even in mildly affected individuals and there is a need for new therapeutic strategies. We hypothesized that (i) the skeletal manifestations of RTHα are mediated by the persistent TRα/NCoR1/HDAC repressor complex containing mutant TRα, and (ii) treatment with the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) would ameliorate these manifestations. Methods We determined the skeletal phenotypes of (i) Thra1PV/+ mice, a well characterized model of RTHα, (ii) Ncor1ΔID/ΔID mice, which express an NCoR1 mutant that fails to interact with TRα, and (iii) Thra1PV/+Ncor1ΔID/ΔID double mutant adult mice. Wild-type, Thra1PV/+, Ncor1ΔID/ΔID, and Thra1PV/+Ncor1ΔID/ΔID double mutant mice were also treated with SAHA to determine whether HDAC inhibition results in amelioration of skeletal abnormalities. Results Thra1PV/+ mice had a severe skeletal dysplasia characterized by short stature, abnormal bone morphology and increased bone mineral content. Despite normal bone length, Ncor1ΔID/ΔID mice displayed increased cortical bone mass, mineralization and strength. Thra1PV/+Ncor1ΔID/ΔID double mutant mice displayed only a small improvement of skeletal abnormalities compared to Thra1PV/+ mice. Treatment with SAHA to inhibit histone deacetylation had no beneficial or detrimental effects on bone structure, mineralization or strength in wild-type or mutant mice. Conclusions These studies indicate treatment with SAHA is unlikely to improve the skeletal manifestations of RTHα. Nevertheless, the findings (i) confirm that TRα1 has a critical role in the regulation of skeletal development and adult bone mass, (ii) suggest a physiological role for alternative co-repressors that interact with TR in skeletal cells, and (iii) demonstrate a novel role for NCoR1 in the regulation of adult bone mass and strength

    Non-Gaussian perturbations from multi-field inflation

    Get PDF
    We show how the primordial bispectrum of density perturbations from inflation may be characterised in terms of manifestly gauge-invariant cosmological perturbations at second order. The primordial metric perturbation, zeta, describing the perturbed expansion of uniform-density hypersurfaces on large scales is related to scalar field perturbations on unperturbed (spatially-flat) hypersurfaces at first- and second-order. The bispectrum of the metric perturbation is thus composed of (i) a local contribution due to the second-order gauge-transformation, and (ii) the instrinsic bispectrum of the field perturbations on spatially flat hypersurfaces. We generalise previous results to allow for scale-dependence of the scalar field power spectra and correlations that can develop between fields on super-Hubble scales.Comment: 11 pages, RevTex; minor changes to text; conclusions unchanged; version to appear in JCA
    corecore