2,954 research outputs found

    Restoring the sting to metric preheating

    Get PDF
    The relative growth of field and metric perturbations during preheating is sensitive to initial conditions set in the preceding inflationary phase. Recent work suggests this may protect super-Hubble metric perturbations from resonant amplification during preheating. We show that this possibility is fragile and sensitive to the specific form of the interactions between the inflaton and other fields. The suppression is naturally absent in two classes of preheating in which either (1) the vacua of the non-inflaton fields during inflation are deformed away from the origin, or (2) the effective masses of non-inflaton fields during inflation are small but during preheating are large. Unlike the simple toy model of a g2ϕ2χ2g^2 \phi^2 \chi^2 coupling, most realistic particle physics models contain these other features. Moreover, they generically lead to both adiabatic and isocurvature modes and non-Gaussian scars on super-Hubble scales. Large-scale coherent magnetic fields may also appear naturally.Comment: 6 pages, 3 ps figures, RevTex, revised discussion of backreaction and new figure. To appear Phys. Rev. D (Rapid Communication

    Primordial black hole production due to preheating

    Get PDF
    During the preheating process at the end of inflation the amplification of field fluctuations can lead to the amplification of curvature perturbations. If the curvature perturbations on small scales are sufficiently large, primordial black holes (PBHs) will be overproduced. In this paper we study PBH production in the two-field preheating model with quadratic inflaton potential. We show that for many values of the inflaton mass m, and coupling g, small scale perturbations will be amplified sufficiently, before backreaction can shut off preheating, so that PBHs will be overproduced during the subsequent radiation dominated era.Comment: 5 pages, 3 eps figures. Minor changes to match version to appear in PRD as a rapid communicatio

    A new twist to preheating

    Full text link
    Metric perturbations typically strengthen field resonances during preheating. In contrast we present a model in which the super-Hubble field resonances are completely {\em suppressed} when metric perturbations are included. The model is the nonminimal Fakir-Unruh scenario which is exactly solvable in the long-wavelength limit when metric perturbations are included, but exhibits exponential growth of super-Hubble modes in their absence. This gravitationally enhanced integrability is exceptional, both for its rarity and for the power with which it illustrates the importance of including metric perturbations in consistent studies of preheating. We conjecture a no-go result - there exists no {\em single-field} model with growth of cosmologically-relevant metric perturbations during preheating.Comment: 6 pages, 3 figures, Version to appear in Physical Review

    Massless Metric Preheating

    Get PDF
    Can super-Hubble metric perturbations be amplified exponentially during preheating ? Yes. An analytical existence proof is provided by exploiting the conformal properties of massless inflationary models. The traditional conserved quantity \zeta is non-conserved in many regions of parameter space. We include backreaction through the homogeneous parts of the inflaton and preheating fields and discuss the role of initial conditions on the post-preheating power-spectrum. Maximum field variances are strongly underestimated if metric perturbations are ignored. We illustrate this in the case of strong self-interaction of the decay products. Without metric perturbations, preheating in this case is very inefficient. However, metric perturbations increase the maximum field variances and give alternative channels for the resonance to proceed. This implies that metric perturbations can have a large impact on calculations of relic abundances of particles produced during preheating.Comment: 8 pages, 4 colour figures. Version to appear in Phys. Rev. D. Contains substantial new analysis of the ranges of parameter space for which large changes to the inflation-produced power spectrum are expecte

    Dynamic reconfiguration of human brain networks during learning

    Get PDF
    Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to drive desired behavior. These two attributes -- flexibility and selection -- must operate over multiple temporal scales as performance of a skill changes from being slow and challenging to being fast and automatic. Such selective adaptability is naturally provided by modular structure, which plays a critical role in evolution, development, and optimal network function. Using functional connectivity measurements of brain activity acquired from initial training through mastery of a simple motor skill, we explore the role of modularity in human learning by identifying dynamic changes of modular organization spanning multiple temporal scales. Our results indicate that flexibility, which we measure by the allegiance of nodes to modules, in one experimental session predicts the relative amount of learning in a future session. We also develop a general statistical framework for the identification of modular architectures in evolving systems, which is broadly applicable to disciplines where network adaptability is crucial to the understanding of system performance.Comment: Main Text: 19 pages, 4 figures Supplementary Materials: 34 pages, 4 figures, 3 table

    CompGO: an R package for comparing and visualizing gene ontology enrichment differences between DNA binding experiments

    Get PDF
    Background: Gene ontology (GO) enrichment is commonly used for inferring biological meaning from systems biology experiments. However, determining differential GO and pathway enrichment between DNA-binding experiments or using the GO structure to classify experiments has received little attention. Results: Herein, we present a bioinformatics tool, CompGO, for identifying Differentially Enriched Gene Ontologies, called DiEGOs, and pathways, through the use of a z-score derivation of log odds ratios, and visualizing these differences at GO and pathway level. Through public experimental data focused on the cardiac transcription factor NKX2-5, we illustrate the problems associated with comparing GO enrichments between experiments using a simple overlap approach. Conclusions: We have developed an R/Bioconductor package, CompGO, which implements a new statistic normally used in epidemiological studies for performing comparative GO analyses and visualizing comparisons from .BED data containing genomic coordinates as well as gene lists as inputs. We justify the statistic through inclusion of experimental data and compare to the commonly used overlap method. CompGO is freely available as a R/Bioconductor package enabling easy integration into existing pipelines and is available at: http://www.bioconductor.org/packages/release/bioc/html/CompGO.html packages/release/bioc/html/CompGO.htm

    The physical determinants of the thickness of lamellar polymer crystals

    Full text link
    Based upon kinetic Monte Carlo simulations of crystallization in a simple polymer model we present a new picture of the mechanism by which the thickness of lamellar polymer crystals is constrained to a value close to the minimum thermodynamically stable thickness. This description contrasts with those given by the two dominant theoretical approaches.Comment: 4 pages, 4 figures, revte

    Investigating the KNDy hypothesis in humans by co-administration of kisspeptin, neurokinin B and naltrexone in men

    Get PDF
    Context: A subpopulation of hypothalamic neurons co-localise three neuropeptides namely kisspeptin, neurokinin B (NKB) and dynorphin collectively termed KNDy neurons. Animal studies suggest they interact to affect pulsatile GnRH release (KNDy hypothesis); kisspeptin stimulates, NKB modulates and dynorphin (an opioid) inhibits. Objective: To investigate the KNDy hypothesis in humans, we assessed for the first time the effects of co-administration of kisspeptin-54, NKB and an opioid receptor antagonist, naltrexone on LH pulsatility (surrogate marker for GnRH pulsatility) and gonadotropin release. Design, setting and participants: Ethically approved prospective, single-blinded placebo-controlled study. Healthy male volunteers (n=5/group) attended our research facility for 8 study visits. Intervention and main outcome measure: After 1h baseline blood sampling, participants received a different intervention at each visit: oral 50mg naltrexone (NAL), 8h intravenous infusions of vehicle, 2.56nmol/kg/h NKB (NKB), 0.1nmol/kg/h kissspeptin-54 (KP) alone and in combination. Frequent blood sampling to measure plasma gonadotropins and sex steroids was conducted and LH pulsatility was determined using blinded deconvolution analysis. Results: All kisspeptin and naltrexone containing groups potently increased LH and LH pulsatility (p<0.001 vs vehicle). NKB alone did not affect gonadotropins. NKB+KP had significantly lower increases in gonadotropins compared with kisspeptin alone (p<0.01). NAL+KP was the only group to significantly increase LH pulse amplitude (p<0.001 vs vehicle). Conclusions: Our results suggest significant interactions between the KNDy neuropeptides on LH pulsatility and gonadotropin release in humans. This has important implications for improving our understanding of GnRH pulse generation in humans

    Classification of Multiwavelength Transients with Machine Learning

    Get PDF
    With the advent of powerful telescopes such as the Square Kilometer Array and the Vera C. Rubin Observatory, we are entering an era of multiwavelength transient astronomy that will lead to a dramatic increase in data volume. Machine learning techniques are well suited to address this data challenge and rapidly classify newly detected transients. We present a multiwavelength classification algorithm consisting of three steps: (1) interpolation and augmentation of the data using Gaussian processes; (2) feature extraction using wavelets; and (3) classification with random forests. Augmentation provides improved performance at test time by balancing the classes and adding diversity into the training set. In the first application of machine learning to the classification of real radio transient data, we apply our technique to the Green Bank Interferometer and other radio light curves. We find we are able to accurately classify most of the 11 classes of radio variables and transients after just eight hours of observations, achieving an overall test accuracy of 78 percent. We fully investigate the impact of the small sample size of 82 publicly available light curves and use data augmentation techniques to mitigate the effect. We also show that on a significantly larger simulated representative training set that the algorithm achieves an overall accuracy of 97 percent, illustrating that the method is likely to provide excellent performance on future surveys. Finally, we demonstrate the effectiveness of simultaneous multiwavelength observations by showing how incorporating just one optical data point into the analysis improves the accuracy of the worst performing class by 19 percent.Comment: 16 pages, 12 figure

    Preheating of the nonminimally coupled inflaton field

    Get PDF
    We investigate preheating of an inflaton field ϕ\phi coupled nonminimally to a spacetime curvature. In the case of a self-coupling inflaton potential V(ϕ)=λϕ4/4V(\phi)=\lambda \phi^4/4, the dynamics of preheating changes by the effect of the negative ξ\xi. We find that the nonminimal coupling works in two ways. First, since the initial value of inflaton field for reheating becomes smaller with the increase of ξ|\xi|, the evolution of the inflaton quanta is delayed for fixed λ\lambda. Second, the oscillation of the inflaton field is modified and the nonadiabatic change around ϕ=0\phi=0 occurs significantly. That makes the resonant band of the fluctuation field wider. Especially for strong coupling regimes ξ1|\xi| \gg 1, the growth of the inflaton flutuation is dominated by the resonance due to the nonminimal coupling, which leads to the significant enhancement of low momentum modes. Although the final variance of the inflaton fluctuation does notchange significantly compared with the minimally coupled case, we have found that the energy transfer from the homogeneous inflaton to created particles efficiently occurs for ξ<60\xi<-60.Comment: 13pages, 11figure
    corecore