18 research outputs found
The Blackhole-Dark Matter Halo Connection
We explore the connection between the central supermassive blackholes (SMBH)
in galaxies and the dark matter halo through the relation between the masses of
the SMBHs and the maximum circular velocities of the host galaxies, as well as
the relationship between stellar velocity dispersion of the spheroidal
component and the circular velocity. Our assumption here is that the circular
velocity is a proxy for the mass of the dark matter halo. We rely on a
heterogeneous sample containing galaxies of all types. The only requirement is
that the galaxy has a direct measurement of the mass of its SMBH and a direct
measurement of its circular velocity and its velocity dispersion. Previous
studies have analyzed the connection between the SMBH and dark matter halo
through the relationship between the circular velocity and the bulge velocity
dispersion, with the assumption that the bulge velocity dispersion stands in
for the mass of the SMBH, via the well{}-established SMBH mass{}-bulge velocity
dispersion relation. Using intermediate relations may be misleading when one is
studying them to decipher the active ingredients of galaxy formation and
evolution. We believe that our approach will provide a more direct probe of the
SMBH and the dark matter halo connection. We find that the correlation between
the mass of supermassive blackholes and the circular velocities of the host
galaxies is extremely weak, leading us to state the dark matter halo may not
play a major role in regulating the blackhole growth in the present Universe.Comment: Accepted for publication in the Ap
The Nature of the UV/X-Ray Absorber in PG 2302+029
We present Chandra X-ray observations of the radio-quiet QSO PG 2302+029.
This quasar has a rare system of ultra-high velocity (-56,000 km/s) UV
absorption lines that form in an outflow from the active nucleus (Jannuzi et
al. 2003). The Chandra data indicate that soft X-ray absorption is also
present. We perform a joint UV and X-ray analysis, using photoionization
calculations, to detemine the nature of the absorbing gas. The UV and X-ray
datasets were not obtained simultaneously. Nonetheless, our analysis suggests
that the X-ray absorption occurs at high velocities in the same general region
as the UV absorber. There are not enough constraints to rule out multi-zone
models. In fact, the distinct broad and narrow UV line profiles clearly
indicate that multiple zones are present. Our preferred estimates of the
ionization and total column density in the X-ray absorber (log U=1.6,
N_H=10^22.4 cm^-2) over predict the O VI 1032, 1038 absorption unless the X-ray
absorber is also outflowing at ~56,000 km/s, but they over predict the Ne VIII
770, 780 absorption at all velocities. If we assume that the X-ray absorbing
gas is outflowing at the same velocity of the UV-absorbing wind and that the
wind is radiatively accelerated, then the outflow must be launched at a radius
of < 10^15 cm from the central continuum source. The smallness of this radius
casts doubts on the assumption of radiative acceleration.Comment: Accepted for Publication in Ap
Emission-Line Properties of the Optical Filaments of NGC 1275
Extended nebular filaments are seen at optical wavelengths in NGC 1275, the
central galaxy in the Perseus cluster. The agents responsible for the
excitation of these filaments remain poorly understood. In this paper we
investigate possible mechanisms for powering the filaments, using measurements
from an extensive spectroscopic data set acquired at the Lick Observatory 3-m
Shane telescope. The results show that the filaments are in an extremely low
ionization and excitation state. The high signal-to-noise ratio of the spectra
allows us to measure or place sensitive upper limits on weak but important
diagnostic lines. We compare the observed line intensity ratios to the
predictions of various ionization models, including photoionization by an
active galactic nucleus, shock heating, stellar photoionization, and
photoionization by the intracluster medium. We also investigate possible roles
for cluster extreme-ultraviolet emission, and filtering of cluster soft X-ray
emission by an ionized screen, in the energetics of the filaments. None of
these mechanisms provides an entirely satisfactory explanation for the physical
state of the nebulae. Heating and ionization by reconnection of the
intracluster magnetic field remains a potentially viable alternative, which
merits further investigation through Faraday rotation studies.Comment: Accepted for publication in Ap
Hubble Space Telescope Ultraviolet Spectroscopy of Fourteen Low-Redshift Quasars
We present low-resolution ultraviolet spectra of 14 low redshift (z<0.8)
quasars observed with HST/STIS as part of a Snap project to understand the
relationship between quasar outflows and luminosity. By design, all
observations cover the CIV emission line. Nine of the quasars are from the
Hamburg-ESO catalog, three are from the Palomar-Green catalog, and one is from
the Parkes catalog. The sample contains a few interesting quasars including two
broad absorption line (BAL) quasars (HE0143-3535, HE0436-2614), one quasar with
a mini-BAL (HE1105-0746), and one quasar with associated narrow absorption
(HE0409-5004). These BAL quasars are among the brightest known (though not the
most luminous) since they lie at z<0.8. We compare the properties of these BAL
quasars to the z1.4 Large Bright Quasar samples. By
design, our objects sample luminosities in between these two surveys, and our
four absorbed objects are consistent with the v ~ L^0.62 relation derived by
Laor & Brandt (2002). Another quasar, HE0441-2826, contains extremely weak
emission lines and our spectrum is consistent with a simple power-law
continuum. The quasar is radio-loud, but has a steep spectral index and a
lobe-dominated morphology, which argues against it being a blazar. The unusual
spectrum of this quasar resembles the spectra of the quasars PG1407+265,
SDSSJ1136+0242, and PKS1004+13 for which several possible explanations have
been entertained.Comment: Uses aastex.cls, 21 pages in preprint mode, including 6 figures and 2
tables; accepted for publication in The Astronomical Journal (projected vol
133
Incorporating Gravity into the Path Integral of Quantum Mechanics Using the Thermodynamics of Spacetime
We use principles from the thermodynamics of spacetime to modify the path integral of quantum mechanics. Entropy of the vacuum is interpreted as microstates that correspond to the measure of the path integral. The result is a contribution to the action that is proportional to the Einstein-Hilbert action. Because the contribution is real, not imaginary, it is likely to result in convergence in many cases. Paths that minimize the Einstein-Hilbert action make the largest contribution to the path integral, implying that the maximum likelihood paths are solutions of the Einstein equation