44 research outputs found

    Purification and biochemical characterization of a novel thermostable protease from the oyster mushroom Pleurotus sajor-caju strain CTM10057 with industrial interest

    Get PDF
    Background Proteases are hydrolytic enzymes that catalyze peptide linkage cleavage reactions at the level of proteins and peptides with different degrees of specificity. This group draws the attention of industry. More than one protease in three is a serine protease. Classically, they are active at neutral to alkaline pH. The serine proteases are researched for industrial uses, especially detergents. They are the most commercially available enzyme group in the world market. Overall, fungi produced extracellular proteases, easily separated from mycelium by filtration. Results A new basidiomycete fungus CTM10057, a hyperproducer of a novel protease (10,500U/mL), was identified as Pleurotus sajor-caju (oyster mushroom). The enzyme, called SPPS, was purified to homogeneity by heat-treatment (80 C for 20min) followed by ammonium sulfate precipitation (35-55%)-dialysis, then UNO Q-6 FPLC ion-exchange chromatography and finally HPLC-ZORBAX PSM 300 HPSEC gel filtration chromatography, and submitted to biochemical characterization assays. The molecular mass was estimated to be 65 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), Native-PAGE, casein-zymography, and size exclusion by HPLC. A high homology with mushroom proteases was displayed by the first 26 amino-acid residues of the NH2-terminal aminoacid sequence. Phenylmethanesulfonyl fluoride (PMSF) and diiodopropyl fluorophosphates (DFP) strongly inhibit SPPS, revealing that it is a member of the serine-proteases family. The pH and temperature optima were 9.5 and 70 C, respectively. Interestingly, SPPS possesses the most elevated hydrolysis level and catalytic efficiency in comparison with SPTC, Flavourzyme 500 L, and Thermolysin type X proteases. More remarkably, a high tolerance towards organic solvent tolerance was exhibited by SPPS, together with considerable detergent stability compared to the commercial proteases Thermolysin type X and Flavourzyme 500 L, respectively. Conclusions This proves the excellent proprieties characterizing SPPS, making it a potential candidate for industrial applications especially detergent formulations

    Inhibition of Fungi and Gram-Negative Bacteria by Bacteriocin BacTN635 Produced by Lactobacillus plantarum sp. TN635

    Get PDF
    The aim of this study was to evaluate 54 lactic acid bacteria (LAB) strains isolated from meat, fermented vegetables and dairy products for their capacity to produce antimicrobial activities against several bacteria and fungi. The strain designed TN635 has been selected for advanced studies. The supernatant culture of this strain inhibits the growth of all tested pathogenic including the four Gram-negative bacteria (Salmonella enterica ATCC43972, Pseudomonas aeruginosa ATCC 49189, Hafnia sp. and Serratia sp.) and the pathogenic fungus Candida tropicalis R2 CIP203. Based on the nucleotide sequence of the 16S rRNA gene of the strain TN635 (1,540 pb accession no FN252881) and the phylogenetic analysis, we propose the assignment of our new isolate bacterium as Lactobacillus plantarum sp. TN635 strain. Its antimicrobial compound was determined as a proteinaceous substance, stable to heat and to treatment with surfactants and organic solvents. Highest antimicrobial activity was found between pH 3 and 11 with an optimum at pH = 7. The BacTN635 was purified to homogeneity by a four-step protocol involving ammonium sulfate precipitation, centrifugal microconcentrators with a 10-kDa membrane cutoff, gel filtration Sephadex G-25, and C18 reverse-phase HPLC. SDS-PAGE analysis of the purified BacTN635, revealed a single band with an estimated molecular mass of approximately 4 kDa. The maximum bacteriocin production (5,000 AU/ml) was recorded after a 16-h incubation in Man, Rogosa, and Sharpe (MRS) medium at 30 °C. The mode of action of the partial purified BacTN635 was identified as bactericidal against Listeria ivanovii BUG 496 and as fungistatic against C. tropicalis R2 CIP203

    Therapeutic effects of soy isoflavones on -amylase activity, insulin deficiency, liver-kidney function and metabolic disorders in diabetic rats

    No full text
    International audienceNatural estrogens have demonstrated a wide variety of biological activities, which makes them a good candidate for the treatment of diabetes. In vitro, this study evidenced that isoflavones enhanced insulin secretion and inhibited α-amylase activity. In vivo, the findings indicated that soy isoflavones stimulated insulin secretion, increased the hepatic glycogen content and suppressed blood glucose level. The soy isoflavones were also protected hepatic-kidney functions showed by the significant increase in superoxide dismutase, catalase and glutathione peroxidase activities and the decrease in thiobarbituric acid reactive substances, total bilirubin, creatinine and transaminases content. Moreover, soy isoflavones induced a decrease in LDL-cholesterol and triglycerides and an increase in HDL-cholesterol in plasma and liver. Overall, the findings of the current study indicate that soy isoflavones exhibit attractive properties and can, therefore, be considered a promising candidate for future application as alternative therapeutic agents, particularly in the development of anti-diabetic and hypolipidaemic drugs

    Inhibitory effect of fenugreek galactomannan on digestive enzymes related to diabetes, hyperlipidemia, and liver-kidney dysfunctions

    No full text
    International audienceThe present study was undertaken to investigate the effect of fenugreek galactomannan on intestinal glucose uptake in surviving diabetic rats. It explored their potential action with respect to lowering maltase, lactase, and sucrase activities in the small intestine of galactomannan-treated diabetic group compared to the diabetic control group. The findings indicate that the increase of blood glucose levels was significantly suppressed in the galactomannan-treated group than those in the diabetic rats. Moreover, the galactomannan isolated from fenugreek exhibited a prominent selective inhibitory effect against intestinal lipase activity. It was found to significantly delay the absorption of LDL-cholesterol and triglycerides and the increase in HDL-cholesterol. In addition, fenugreek galactomannan efficiently protect the hepatic function observed by the considerable decrease of aspartate and alanine transaminases (AST and ALT) and lactate deshydrogenase (LDH) contents in the serum of diabetic rats. The beneficial effects of fenugreek galactomannan were also evidenc-ed by their capacity to inhibit diabetes-induced kidney injury through lowering the urea and creatinine content in plasma. Overall, the conclusion of the present study indicate that fenugreek galactomannan displays a number of promising properties and attributes for future applications as therapeutic agents in biotechnological and bioprocess-based technologies, particularly those interested in the development of anti-diabetic and hypolipidemic drugs

    Inhibitory effects of estrogens on digestive enzymes, insulin deficiency, and pancreas toxicity in diabetic rats

    No full text
    International audienceDiabetes mellitus, with its attendant disorders and dysfunctional behaviors, constitutes a growing concern to the population of the world. With this concern in mind, the present study investigated the anti-diabetic and hypolipedimic potential of 17 beta-estradiol (called E2), particularly in terms of its inhibitory effects on maltase, sucrase, lactase, and lipase activities in the intestine of surviving diabetic rats. The findings revealed that this supplement helped protect the beta cells of the rats from death and damage. Interestingly, E2 induced considerable decreases of 29%, 46%, 42%, and 84% in the activities of intestinal maltase, lactase, sucrase, and lipase, respectively. The E2 extract also decreased the glucose, triglyceride, and total cholesterol rates in the plasma of diabetic rats by 39%, 27%, and 53%, respectively, and increased the HDL-cholesterol level by 74%, which helped maintain the homeostasis of blood lipid. When compared to those of the untreated diabetic rats, the superoxide dismutase, catalase, and glutathione peroxidase levels in the pancreas of the rats treated with this supplement were also enhanced by 330%, 170%, and 301%, respectively. A significant decrease was also observed in the lipid peroxidation level and lactate dehydrogenase activity in the pancreas of diabetic rats after E2 administration. Overall, the findings presented in this study demonstrate that E2 has both a promising potential with regard to the inhibition of intestinal maltase, sucrase, lactase, and lipase activities, and a valuable hypoglycemic and hypolipidemic function, which make it a potential strong candidate for industrial application as apharmacological agent for the treatment and prevention of hyperlipidemia, obesity, and cardiovascular diseases

    Modulatory effect of fenugreek saponins on the activities of intestinal and hepatic disaccharidase and glycogen and liver function of diabetic rats

    No full text
    International audienceDiabetes mellitus is a serious health concern throughout the world and is often associated with a variety of bodily disorders such as liver toxicity and dysfunction. This study elucidates the effect of fenugreek saponin administration on disaccharidase and glycogen activities in the intestine and liver of surviving diabetic rats. It also evaluates the effect of saponin feeding using a number of liver toxicity indices, namely stress oxidant, liver dysfunction markers and metabolism. Our findings indicate that the fenugreek saponin fraction significantly modulated the disaccharidase and glycogen enzyme activities in the intestine and liver of rats, increased the hepatic glycogen content, suppressed the increase of blood glucose level and improved results in the oral glucose tolerance test (OGTT). The fenugreek saponin extract also efficiently protected the hepatic function, which was evidenced by the significant increases of superoxide dismutase (SOD), catalase (CAT), gluthation peroxidase (GPX), aspartate transaminase (AST), alanine transaminase (ALT) and lactate deshydrogenase (LDH) enzyme activities. Fenugreek saponin also induced a notable delay in the absorption of LDL-cholesterol and triglycerides and a remarkable increase in levels of HDL-cholesterol. A histological analysis of the hepatic tissues further established the positive effect of fenugreek saponin. Overall, the findings of the current study indicate that fenugreek saponins exhibit attractive properties and can be considered as promising candidates for future application as therapeutic agents in biotechnological and bioprocess-based technologies, particularly those related to the development of anti-diabetic, hepatoprotective and hypolipidemic drugs

    Statistical Experimental Design Optimization of Microbial Proteases Production under Co-Culture Conditions for Chitin Recovery from Speckled Shrimp Metapenaeus monoceros By-Product

    No full text
    This study was designed with the aim to produce microbial proteases in presence of speckled shrimp by-product. For this reason, three strains belonging to Bacillus genus, namely, Aeribacillus pallidus VP3, Lysinibacillus fusiformis C250R, and Anoxybacillus kamchatkensis M1V were studied under co-culture procedure. A Taguchi L27 experimental design was applied to optimize the co-culture parameters. The experimental design was built with 9 factors (by-product powder concentration, the pH of the medium, the temperature, the sucrose concentration, the agitation speed, the inoculum sizes of VP3, M1V, and C250R strains, and the culture volume) at three different levels. The obtained results showed that a total protease activity of 8,182 U/mL could be achieved after 24 h of incubation in presence of 20 g/L shrimp by-product and 10 g/L sucrose, at an initial pH of 7, a 40°C temperature and absorbance, at 600 nm, of inoculum sizes of 0.1, 0.3, and 0.1 for VP3, M1V, and C250R strains, respectively. The agitation was set at 200 rpm, and the final volume was 25 mL. Taguchi’s design allowed the identification of temperature, the inoculum size for strain VP3, the inoculum size for strain M1V, and the final culture volume as the most influencing variables. A Box–Behnken design with 27 experiments was carried out for the optimization of these four selected factors. Following such design, the highest protease production reached was 11,300 U/mL. This yield was obtained in a final culture volume of 15 mL containing 20 g/L shrimp by-product powder and 10 g/L sucrose and inoculated with VP3, C250R, and M1V strains at 0.05, 0.1, and 0.2, respectively. The flasks were incubated at 45°C for 24 h with shaking at 200 rpm. The efficiency of chitin extraction by co-cultivation was investigated under the latter conditions. The chitin yield from shells by-product was 16.7%. Fourier-Transform Infrared (FTIR) analysis of the obtained chitin displayed characteristic profiles similar to that of the commercial α-chitin

    Characterization of endospore-forming bacteria producing extracellular enzymes isolated from the Djurdjura Mountains in Algeria

    Get PDF
    Biodiversity in mountains in Algeria appears scanty and has not been thoroughly investigated. However, the mountain soil has been shown as an  almost entire reserve of novel enzymes with interesting properties for industrial and environmental applications. In the present study, thirty  bacterial strains were isolated from the Djurdjura Mountains in Kabylia (Algeria) and were studied for their ability to produce enzymes to be possibly  used in biotechnological processes such as amylase, caseinase, and chitinase. The characterization of these isolates was carried out using  morphological, physiological, and biochemical characteristics. All the data obtained with regards to the phenotypical properties of the isolates,  confirmed that the strains belonged to the Bacillus group. In addition, the 16S rRNA gene of the two retained strains KA15 and LK-DZ15 was also  amplified and sequenced. Phylogenetic tree was, afterwards, constructed. The nucleotide sequences and blast analyses confirmed that the KA15  and LK-DZ15 strains were closely related to those of the Bacillus altitudinis (accession n°.: MK874318) and Paenibacillus timonensis (accession n°.:  MK734103) strains. The presence of amylases, proteases, and chitinases in KA15 and LK-DZ15 isolates are an indicator of their pivotal application in  a variety of biotechnological processes.&nbsp
    corecore