38 research outputs found

    HIV-1 Tat promotes premature brain aging

    Full text link

    A comprehensive analysis of the naturally occurring polymorphisms in HIV-1 Vpr: Potential impact on CTL epitopes

    Get PDF
    The enormous genetic variability reported in HIV-1 has posed problems in the treatment of infected individuals. This is evident in the form of HIV-1 resistant to antiviral agents, neutralizing antibodies and cytotoxic T lymphocytes (CTLs) involving multiple viral gene products. Based on this, it has been suggested that a comprehensive analysis of the polymorphisms in HIV proteins is of value for understanding the virus transmission and pathogenesis as well as for the efforts towards developing anti-viral therapeutics and vaccines. This study, for the first time, describes an in-depth analysis of genetic variation in Vpr using information from global HIV-1 isolates involving a total of 976 Vpr sequences. The polymorphisms at the individual amino acid level were analyzed. The residues 9, 33, 39, and 47 showed a single variant amino acid compared to other residues. There are several amino acids which are highly polymorphic. The residues that show ten or more variant amino acids are 15, 16, 28, 36, 37, 48, 55, 58, 59, 77, 84, 86, 89, and 93. Further, the variant amino acids noted at residues 60, 61, 34, 71 and 72 are identical. Interestingly, the frequency of the variant amino acids was found to be low for most residues. Vpr is known to contain multiple CTL epitopes like protease, reverse transcriptase, Env, and Gag proteins of HIV-1. Based on this, we have also extended our analysis of the amino acid polymorphisms to the experimentally defined and predicted CTL epitopes. The results suggest that amino acid polymorphisms may contribute to the immune escape of the virus. The available data on naturally occurring polymorphisms will be useful to assess their potential effect on the structural and functional constraints of Vpr and also on the fitness of HIV-1 for replication

    Detection of Ligation Products of DNA Linkers with 5β€²-OH Ends by Denaturing PAGE Silver Stain

    Get PDF
    To explore if DNA linkers with 5β€²-hydroxyl (OH) ends could be joined by commercial T4 and E. coli DNA ligase, these linkers were synthesized by using the solid-phase phosphoramidite method and joined by using commercial T4 and E. coli DNA ligases. The ligation products were detected by using denaturing PAGE silver stain and PCR method. About 0.5–1% of linkers A–B and E–F, and 0.13–0.5% of linkers C–D could be joined by T4 DNA ligases. About 0.25–0.77% of linkers A–B and E–F, and 0.06–0.39% of linkers C–D could be joined by E. coli DNA ligases. A 1-base deletion (-G) and a 5-base deletion (-GGAGC) could be found at the ligation junctions of the linkers. But about 80% of the ligation products purified with a PCR product purification kit did not contain these base deletions, meaning that some linkers had been correctly joined by T4 and E. coli DNA ligases. In addition, about 0.025–0.1% of oligo 11 could be phosphorylated by commercial T4 DNA ligase. The phosphorylation products could be increased when the phosphorylation reaction was extended from 1 hr to 2 hrs. We speculated that perhaps the linkers with 5β€²-OH ends could be joined by T4 or E. coli DNA ligase in 2 different manners: (i) about 0.025–0.1% of linkers could be phosphorylated by commercial T4 DNA ligase, and then these phosphorylated linkers could be joined to the 3β€²-OH ends of other linkers; and (ii) the linkers could delete one or more nucleotide(s) at their 5β€²-ends and thereby generated some 5β€²-phosphate ends, and then these 5β€²-phosphate ends could be joined to the 3β€²-OH ends of other linkers at a low efficiency. Our findings may probably indicate that some DNA nicks with 5β€²-OH ends can be joined by commercial T4 or E. coli DNA ligase even in the absence of PNK

    High-Performance Capillary Electrophoresis for Determining HIV-1 Tat Protein in Neurons

    Get PDF
    The HIV-1 protein, Tat has been implicated in AIDS pathogenesis however, the amount of circulating Tat is believed to be very low and its quantification has been difficult. We performed the quantification of Tat released from infected cells and taken up by neurons using high performance capillary electrophoresis. This is the first report to successfully measure the amount of Tat in neurons and places Tat as a key player involved in HIV-associated neurocognitive disorders

    Differential Effects of Vpr on Single-cycle and Spreading HIV-1 Infections in CD4+ T-cells and Dendritic Cells

    Get PDF
    The Vpr protein of human immunodeficiency virus type 1 (HIV-1) contributes to viral replication in non-dividing cells, specifically those of the myeloid lineage. However, the effects of Vpr in enhancing HIV-1 infection in dendritic cells have not been extensively investigated. Here, we evaluated the role of Vpr during infection of highly permissive peripheral blood mononuclear cells (PBMCs) and CD4+ T-cells and compared it to that of monocyte-derived dendritic cells (MDDCs), which are less susceptible to HIV-1 infection. Infections of dividing PBMCs and non-dividing MDDCs were carried out with single-cycle and replication-competent HIV-1 encoding intact Vpr or Vpr-defective mutants. In contrast to previous findings, we observed that single-cycle HIV-1 infection of both PBMCs and MDDCs was significantly enhanced in the presence of Vpr when the viral stocks were carefully characterized and titrated. HIV-1 DNA quantification revealed that Vpr only enhanced the reverse transcription and nuclear import processes in single-cycle HIV-1 infected MDDCs, but not in CD4+ T-cells. However, a significant enhancement in HIV-1 gag mRNA expression was observed in both CD4+ T-cells and MDDCs in the presence of Vpr. Furthermore, Vpr complementation into HIV-1 virions did not affect single-cycle viral infection of MDDCs, suggesting that newly synthesized Vpr plays a significant role to facilitate single-cycle HIV-1 infection. Over the course of a spreading infection, Vpr significantly enhanced replication-competent HIV-1 infection in MDDCs, while it modestly promoted viral infection in activated PBMCs. Quantification of viral DNA in replication-competent HIV-1 infected PBMCs and MDDCs revealed similar levels of reverse transcription products, but increased nuclear import in the presence of Vpr independent of the cell types. Taken together, our results suggest that Vpr has differential effects on single-cycle and spreading HIV-1 infections, which are dependent on the permissiveness of the target cell

    Potential use of RNA-dependent RNA polymerase (RdRp) inhibitor against SARS-CoV2 infection

    No full text
    Favipiravir, an inhibitor of RNA-dependent RNA polymerase used against the Japanese flu, was recently suggested as a potential COVID-19 inhibitor. Since Favipiravir targets a critical and a viral specific process, using it as a treatment could be beneficial in slowing the outbreak. Though there have been many suggested antivirals to treat SARS-CoV-2 infection, most treatments target host-associated pathways that may cause adverse effects, Favipiravir or similar combination may be the best remedy against COVID-19 pandemic

    Evidence for Regulation of Long Terminal Repeat Transcription by Wnt Transcription Factor TCF-4 in Human Astrocytic Cells

    No full text
    The Wnt signaling pathway plays an important role in neural cell development and function. The key components of this pathway, Ξ²-catenin and its partner TCF-4/LEF-1, exert their effects on transcription by entering the nuclei, where they associate with the TCF-4/LEF-1 DNA motif positioned in the promoters of several important genes. Here we examined the role of TCF-4 upon transcription of the human immunodeficiency virus type 1 (HIV-1) promoter in human astrocytic cells. Our results showed that expression of TCF-4 in human astrocytic cells (U-87MG cells) decreased the basal and Tat-mediated transcription of the HIV-1 long terminal repeat (LTR). Results from promoter deletion studies revealed that the promoter sequence of the LTR with no classical binding motif for TCF-4/LEF-1, which spans positions βˆ’80 to +80 of the LTR, remained responsive to down-regulation by TCF-4. Noticeably, removal of the sequences between positions βˆ’80 and βˆ’68 decreased the negative effect of TCF-4 on viral gene transcription. A mutant variant of TCF-4 with no binding site for Ξ²-catenin was able to down-regulate LTR transcription, suggesting that Ξ²-catenin may not be directly involved in the observed regulatory events. Results from the glutathione S-transferase pull-down assay as well as the combined immunoprecipitation and Western blot analysis of protein extract from U-87MG cells revealed an interaction of Tat with TCF-4. Subcellular examination of TCF-4 and Tat in cells expressing either protein alone showed a predominantly nuclear accumulation of these proteins. However, in cells which coexpressed both TCF-4 and Tat, significant levels of these proteins were found in the cytoplasm. All together, these observations provide evidence for the cooperative interaction of TCF-4, the important transcription factor of the Wnt pathway, with Tat; this interaction may determine the level of viral gene transcription in human astrocytic cells
    corecore