9 research outputs found

    Non-neoclassical up/down asymmetry of impurity emission on Alcator C-Mod

    Get PDF
    We demonstrate that existing theories are insufficient to explain up/down asymmetries of argon x-ray emission in Alcator C-Mod ohmic plasmas. Instead of the poloidal variation, ñ[subscript z]/〈n[subscript z]〉, being of order the inverse aspect ratio, ϵ, and scaling linearly with B[subscript t][superscript _ over n][subscript e]/I[2 over p], it is observed over 0.8 < r/a < 1.0 to be of order unity and exhibits a threshold behaviour between 3.5 <B[subscript t][superscript _ over n][subscript e]/I[subscript p] < 4.0 (T10[superscript 20] m[superscript −3] MA[superscript −1]). The transition from a poloidally symmetric to asymmetric impurity distribution is shown to occur at densities just below those that trigger a reversal of the core toroidal rotation direction, thought to be linked to the transition between the linear and saturated ohmic confinement regimes. A possible drive is discussed by which anomalous radial transport might sustain the impurity density asymmetry as the ratio of the perpendicular to parallel equilibration times, τ[subscript ⊥,z]/τ[subscript ∥,z], approaches unity. This explanation requires a strong up/down asymmetry in radial flux which, while not observable on C-Mod, has been measured in TEXT and Tore Supra ohmic plasmas.United States. Dept. of Energy (Contract DE-FC02-99ER54512)United States. Dept. of Energy (Fusion Research Postdoctoral Research Program

    Non-local heat transport, rotation reversals and up/down impurity density asymmetries in Alcator C-Mod ohmic L-mode plasmas

    Get PDF
    Several seemingly unrelated effects in Alcator C-Mod ohmic L-mode plasmas are shown to be closely connected: non-local heat transport, core toroidal rotation reversals, energy confinement saturation and up/down impurity density asymmetries. These phenomena all abruptly transform at a critical value of the collisionality. At low densities in the linear ohmic confinement regime, with collisionality ν[subscript *] ≤ 0.35 (evaluated inside of the q = 3/2 surface), heat transport exhibits non-local behaviour, core toroidal rotation is directed co-current, edge impurity density profiles are up/down symmetric and a turbulent feature in core density fluctuations with k[subscript θ] up to 15 cm[superscript −1] (k[subscript θ]ρ[subscript s] ~ 1) is present. At high density/collisionality with saturated ohmic confinement, electron thermal transport is diffusive, core rotation is in the counter-current direction, edge impurity density profiles are up/down asymmetric and the high k[subscript θ] turbulent feature is absent. The rotation reversal stagnation point (just inside of the q = 3/2 surface) coincides with the non-local electron temperature profile inversion radius. All of these observations suggest a possible unification in a model with trapped electron mode prevalence at low collisionality and ion temperature gradient mode domination at high collisionality.United States. Dept. of Energy (Contract DE-FC02-99ER54512)United States. Dept. of Energy. Office of Fusion Energy Sciences (Postdoctoral Research Program

    Effects of IL-2 on MMP Expression in Freshly Isolated Human NK Cells and the IL-2-independent NK Cell Line YT

    No full text
    Interleukin-2 is an important activation factor for natural killer (NK) cells but its effect on NK cell matrix metalloproteinases (MMP) production and matrix degradation is less well investigated. We have used freshly isolated human NK cells and the IL-2-independent NK cell line, YT, to investigate the effects of IL-2 stimulation on NK cell invasion of Matrigel and on MMP expression and production. In YT cells, we found opposing early and late effects of IL-2 stimulation with an early (2 h) increase in MMP-9 protein level and enhanced migration in the Matrigel invasion assay and by 30 hours a decreased mRNA expression of MMP-2, MMP-9, MMP-13, MT3-MMP, and MT6-MMP. We also found a preculture period of 48 hours with IL-2 to negatively affect YT cell migration. We furthermore found that freshly isolated human NK cells Matrigel invasion was MMP-dependent and it increased in response to IL-2. Importantly, in freshly isolated human NK cells we did not see a downregulation of MMPs after 24 hours IL-2 stimulation, but instead a significant upregulation of MT6-MMP mRNA. Because of the cellular localisation of MT6-MMP, which ensures a focalized proteolytic activity, and its high expression compared with the other MMPs in freshly isolated human NK cells makes it of interest to study further.Surgical oncolog

    Literatur

    No full text

    Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis.

    No full text
    Ustilago maydis is a ubiquitous pathogen of maize and a well-established model organism for the study of plant-microbe interactions. This basidiomycete fungus does not use aggressive virulence strategies to kill its host. U. maydis belongs to the group of biotrophic parasites (the smuts) that depend on living tissue for proliferation and development. Here we report the genome sequence for a member of this economically important group of biotrophic fungi. The 20.5-million-base U. maydis genome assembly contains 6,902 predicted protein-encoding genes and lacks pathogenicity signatures found in the genomes of aggressive pathogenic fungi, for example a battery of cell-wall-degrading enzymes. However, we detected unexpected genomic features responsible for the pathogenicity of this organism. Specifically, we found 12 clusters of genes encoding small secreted proteins with unknown function. A significant fraction of these genes exists in small gene families. Expression analysis showed that most of the genes contained in these clusters are regulated together and induced in infected tissue. Deletion of individual clusters altered the virulence of U. maydis in five cases, ranging from a complete lack of symptoms to hypervirulence. Despite years of research into the mechanism of pathogenicity in U. maydis, no &#39;true&#39; virulence factors had been previously identified. Thus, the discovery of the secreted protein gene clusters and the functional demonstration of their decisive role in the infection process illuminate previously unknown mechanisms of pathogenicity operating in biotrophic fungi. Genomic analysis is, similarly, likely to open up new avenues for the discovery of virulence determinants in other pathogens. &copy;2006 Nature Publishing Group

    Kolon - Rektum

    No full text
    corecore