820 research outputs found

    Quantum-kinetic theory of photocurrent generation via direct and phonon-mediated optical transitions

    Get PDF
    A quantum-kinetic theory of direct and phonon mediated indirect optical transitions is developed within the framework of the non-equilibrium Green's function formalism. After validation against the standard Fermi-Golden-Rule approach in the bulk case, it is used in the simulation of photocurrent generation in ultra-thin crystalline silicon p-i-n-junction devices.Comment: 12 pages, 11 figure

    'Hotspots' of Antigen Presentation Revealed by Human Leukocyte Antigen Ligandomics for Neoantigen Prioritization.

    Get PDF
    The remarkable clinical efficacy of the immune checkpoint blockade therapies has motivated researchers to discover immunogenic epitopes and exploit them for personalized vaccines. Human leukocyte antigen (HLA)-binding peptides derived from processing and presentation of mutated proteins are one of the leading targets for T-cell recognition of cancer cells. Currently, most studies attempt to identify neoantigens based on predicted affinity to HLA molecules, but the performance of such prediction algorithms is rather poor for rare HLA class I alleles and for HLA class II. Direct identification of neoantigens by mass spectrometry (MS) is becoming feasible; however, it is not yet applicable to most patients and lacks sensitivity. In an attempt to capitalize on existing immunopeptidomics data and extract information that could complement HLA-binding prediction, we first compiled a large HLA class I and class II immunopeptidomics database across dozens of cell types and HLA allotypes and detected hotspots that are subsequences of proteins frequently presented. About 3% of the peptidome was detected in both class I and class II. Based on the gene ontology of their source proteins and the peptide's length, we propose that their processing may partake by the cellular class II presentation machinery. Our database captures the global nature of the in vivo peptidome averaged over many HLA alleles, and therefore, reflects the propensity of peptides to be presented on HLA complexes, which is complementary to the existing neoantigen prediction features such as binding affinity and stability or RNA abundance. We further introduce two immunopeptidomics MS-based features to guide prioritization of neoantigens: the number of peptides matching a protein in our database and the overlap of the predicted wild-type peptide with other peptides in our database. We show as a proof of concept that our immunopeptidomics MS-based features improved neoantigen prioritization by up to 50%. Overall, our work shows that, in addition to providing huge training data to improve the HLA binding prediction, immunopeptidomics also captures other aspects of the natural in vivo presentation that significantly improve prediction of clinically relevant neoantigens

    BATSE Observations of the Piccinotti Sample of AGN

    Get PDF
    BATSE Earth occultation data have been used to search for emission in the 20-100 keV band from all sources in the Piccinotti sample, which represents to date the only complete 2-10 keV survey of the extragalactic sky down to a limiting flux of 3.1 x 10^(-11) erg cm^(-2)$ s^(-1). Nearly four years of observations have been analyzed to reach a 5sigma sensitivity level of about 7.8x 10^(-11) erg cm^(-2) s^(-1) in the band considered. Of the 36 sources in the sample, 14 have been detected above 5sigma confidence level while marginal detection (3<sigma<5) can be claimed for 13 sources; for 9 objects 2sigma upper limits are reported. Comparison of BATSE results with data at higher energies is used to estimate the robustness of our data analysis: while the detection level of each source is reliable, the flux measurement maybe overestimated in some sources by as much as 35%, probably due to incomplete data cleaning. Comparison of BATSE fluxes with X-ray fluxes, obtained in the 2-10 keV range and averaged over years, indicates that a canonical power law of photon index 1.7 gives a good description of the broad band spectra of bright AGNs and that spectral breaks preferentially occur above 100 keV.Comment: 18 pages, 1 figure. Accepted for publication on Apj

    Engineering Silicon Nanocrystals: Theoretical study of the effect of Codoping with Boron and Phosphorus

    Full text link
    We show that the optical and electronic properties of nanocrystalline silicon can be efficiently tuned using impurity doping. In particular, we give evidence, by means of ab-initio calculations, that by properly controlling the doping with either one or two atomic species, a significant modification of both the absorption and the emission of light can be achieved. We have considered impurities, either boron or phosphorous (doping) or both (codoping), located at different substitutional sites of silicon nanocrystals with size ranging from 1.1 nm to 1.8 nm in diameter. We have found that the codoped nanocrystals have the lowest impurity formation energies when the two impurities occupy nearest neighbor sites near the surface. In addition, such systems present band-edge states localized on the impurities giving rise to a red-shift of the absorption thresholds with respect to that of undoped nanocrystals. Our detailed theoretical analysis shows that the creation of an electron-hole pair due to light absorption determines a geometry distortion that in turn results in a Stokes shift between adsorption and emission spectra. In order to give a deeper insight in this effect, in one case we have calculated the absorption and emission spectra going beyond the single-particle approach showing the important role played by many-body effects. The entire set of results we have collected in this work give a strong indication that with the doping it is possible to tune the optical properties of silicon nanocrystals.Comment: 14 pages 19 figure

    An enshrouded AGN in the merging starburst system Arp~299 revealed by BeppoSAX

    Get PDF
    Using a long (=150 ksec), broad-band (0.1--40 keV) BeppoSAX observation of the merging starburst system Arp 299 (=IC 694 + NGC 3690) we found the first unambiguous evidence of the presence of a deeply buried (N_H = 2.5E24 cm-2) AGN having an intrinsic luminosity of L(0.5-100 keV) = 1.9E43 cgs. The X-ray spectral properties of this AGN are discussed in detail as well as the thermal component detected at soft X-ray energies which, most likely, is associated with the starburst.Comment: 4 pages, 2 figures, Latex manuscript, Accepted for publication in Astrophysical Journal - Letters Editio

    Accurate classification of 75 counterparts of objects detected in the 54 month Palermo Swift/BAT hard X-ray catalogue

    Full text link
    Through an optical campaign performed at 4 telescopes located in the northern and the southern hemispheres, we have obtained optical spectroscopy for 75 counterparts of unclassified or poorly studied hard X-ray emitting objects detected with Swift/BAT and listed in the 54 month Palermo BAT catalogue. All these objects have also observations taken with Swift/XRT, ROSAT or Chandra satellites which allowed us to reduce the high energy error box and pinpoint the most likely optical counterpart/s. We find that 69 sources in our sample are Active Galactic Nuclei (AGNs); of them, 35 are classified as type 1 (with broad and narrow emission lines), 33 are classified as type 2 (with only narrow emission lines) and one is an high redshift QSO; the remaining 6 objects are galactic cataclysmic variables (CVs). Among type 1 AGNs, 32 are objects of intermediate Seyfert type (1.2-1.9) and one is Narrow Line Seyfert 1 galaxy; for 29 out of 35 type 1 AGNs, we have been able to estimate the central black hole mass and the Eddington ratio. Among type 2 AGNs, two display optical features typical of the LINER class, 3 are classified as transition objects, 1 is a starburst galaxy and 2 are instead X-ray bright, optically normal galaxies. All galaxies classified in this work are relatively nearby objects (0.006 - 0.213) except for one at redshift 1.137.Comment: 19 pages, 5 figures, 6 tables, accepted for publications on Astronomy and Astrophysics, main journal. arXiv admin note: text overlap with arXiv:1206.509

    Theory of Umklapp-assisted recombination of bound excitons in Si:P

    Full text link
    We present the calculations for the oscillator strength of the recombination of excitons bound to phosphorous donors in silicon. We show that the direct recombination of the bound exciton cannot account for the experimentally measured oscillator strength of the no-phonon line. Instead, the recombination process is assisted by an umklapp process of the donor electron state. We make use of the empirical pseudopotential method to evaluate the Umklapp-assisted recombination matrix element in second-order perturbation theory. Our result is in excellent agreement with the experiment. We also present two methods to improve the optical resolution of the optical detection of the spin state of a single nucleus in silicon.Comment: 9 pages, 6 EPS figures, Revtex
    corecore