80 research outputs found

    Influence de l'altitude et de la date de récolte sur la qualité de l'huile d'olive au Liban sud

    Get PDF

    Contribution à la préparation des fruits semi confits à base d'orange

    Get PDF

    Femtosecond RMS timing jitter from 1 GHz InP on-chip mode-locked laser at 1550 nm

    Get PDF
    In this work, we analyze the timing stability of a 1 GHz InP on-chip monolithic mode-locked laser at 1550 nm. 504 fs RMS timing jitter is achieved by a hybrid mode-locking operation

    Amplitude noise and RF response analysis of 1 GHz mode-locked pulses from an InP-based laser chip at 1550 nm

    Get PDF
    In this work, we investigate a 1 GHz InP-based hybrid mode-locked laser chip and find an amplitude noise of 0.036 percent. An RF response simulation of its custom-designed mounting PCB is performed providing power transmission between 86 and 92 percent

    RF Analysis of a Sub-GHz InP-Based 1550 nm Monolithic Mode-Locked Laser Chip

    Get PDF
    We report a monolithic sub-GHz repetition rate mode-locked laser with record low pulse-to-pulse RMS timing jitter of 3.65 ps in the passive mode locking regime. We analyse the optical pulse generation in passive and hybrid mode-locking operating regimes, finding narrower RF tone linewidth in the passive regime, attributed to the improved contact structure of the gain sections. The noise performance is also characterized in passive and hybrid regimes, showing RMS integrated timing jitter of approximately 600 fs. For hybrid modelocking, the repetition rate can be varied over a large range from 880 to 990 MHz. We observe broad pulse widths of few hundred picoseconds attributed to the (long folded) waveguide architecture and on-chip multimode interference mirrors. This device subjects a stand-alone, ultra-compact, mode-locking based clock source to realize frequency synthesizers operating over a frequency range from sub-GHz up to approximately 15 GHz

    Machine Learning Identifies Clinical and Genetic Factors Associated With Anthracycline Cardiotoxicity in Pediatric Cancer Survivors

    Get PDF
    BACKGROUND Despite known clinical risk factors, predicting anthracycline cardiotoxicity remains challenging. OBJECTIVES This study sought to develop a clinical and genetic risk prediction model for anthracycline cardiotoxicity in childhood cancer survivors. METHODS We performed exome sequencing in 289 childhood cancer survivors at least 3 years from anthracycline exposure. In a nested case-control design, 183 case patients with reduced left ventricular ejection fraction despite low-dose doxorubicin (\u3c= 250 mg/m(2)), and 106 control patients with preserved left ventricular ejection fraction despite doxorubicin \u3e250 mg/m(2) were selected as extreme phenotypes. Rare/low-frequency variants were collapsed to identify genes differentially enriched for variants between case patients and control patients. The expression levels of 5 top-ranked genes were evaluated in human induced pluripotent stem cell-derived cardiomyocytes, and variant enrichment was confirmed in a replication cohort. Using random forest, a risk prediction model that included genetic and clinical predictors was developed. RESULTS Thirty-one genes were differentially enriched for variants between case patients and control patients (p \u3c 0.001). Only 42.6% case patients harbored a variant in these genes compared to 89.6% control patients (odds ratio: 0.09; 95% confidence interval: 0.04 to 0.17; p = 3.98 x 10(-15)). A risk prediction model for cardiotoxicity that included clinical and genetic factors had a higher prediction accuracy and lower misclassification rate compared to the clinical-only model. In vitro inhibition of gene-associated pathways (PI3KR2, ZNF827) provided protection from cardiotoxicity in cardiomyocytes. CONCLUSIONS Our study identified variants in cardiac injury pathway genes that protect against cardiotoxicity and informed the development of a prediction model for delayed anthracycline cardiotoxicity, and it also provided new targets in autophagy genes for the development of cardio-protective drugs

    Germline mutations in mitochondrial complex I reveal genetic and targetable vulnerability in IDH1-mutant acute myeloid leukaemia

    Get PDF
    The interaction of germline variation and somatic cancer driver mutations is underinvestigated. Here we describe the genomic mitochondrial landscape in adult acute myeloid leukaemia (AML) and show that rare variants affecting the nuclear- and mitochondriallyencoded complex I genes show near-mutual exclusivity with somatic driver mutations affecting isocitrate dehydrogenase 1 (IDH1), but not IDH2 suggesting a unique epistatic relationship. Whereas AML cells with rare complex I variants or mutations in IDH1 or IDH2 all display attenuated mitochondrial respiration, heightened sensitivity to complex I inhibitors including the clinical-grade inhibitor, IACS-010759, is observed only for IDH1-mutant AML. Furthermore, IDH1 mutant blasts that are resistant to the IDH1-mutant inhibitor, ivosidenib, retain sensitivity to complex I inhibition. We propose that the IDH1 mutation limits the flexibility for citrate utilization in the presence of impaired complex I activity to a degree that is not apparent in IDH2 mutant cells, exposing a mutation-specific metabolic vulnerability. This reduced metabolic plasticity explains the epistatic relationship between the germline complex I variants and oncogenic IDH1 mutation underscoring the utility of genomic data in revealing metabolic vulnerabilities with implications for therapy.Mahmoud A. Bassal, Saumya E. Samaraweera, Kelly Lim, Brooks A. Bernard, Sheree Bailey, Satinder Kaur, Paul Leo, John Toubia, Chloe Thompson-Peach, Tran Nguyen, Kyaw Ze Ya Maung, Debora A. Casolari, Diana G. Iarossi, Ilaria S. Pagani, Jason Powell, Stuart Pitson, Siria Natera, Ute Roessner, Ian D. Lewis, Anna L. Brown, Daniel G. Tenen, Nirmal Robinson, David M. Ross, Ravindra Majeti, Thomas J. Gonda, Daniel Thomas, Richard J. D, Andre
    corecore