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ORIGINAL RESEARCH

Machine Learning Identifies Clinical
and Genetic Factors Associated
With Anthracycline Cardiotoxicity in
Pediatric Cancer Survivors
Marie-A Chaix, MD, MSC,a,b Neha Parmar, BSC,a Caroline Kinnear, MSC,a Myriam Lafreniere-Roula, PHD,c

Oyediran Akinrinade, PHD,a Roderick Yao, BCS,a Anastasia Miron, BAH,a Emily Lam, MSC,a Guoliang Meng, PHD,d

Anne Christie, MSC,a Ashok Kumar Manickaraj, PHD,1,a Stacey Marjerrison, MD,e Rejane Dillenburg, MD, MSC,e

Mylène Bassal, MDCM,f Jane Lougheed, MD,f Shayna Zelcer, MD,g Herschel Rosenberg, MD,g David Hodgson, MD,h
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ABSTRACT

BACKGROUND Despite known clinical risk factors, predicting anthracycline cardiotoxicity remains challenging.

OBJECTIVES This study sought to develop a clinical and genetic risk prediction model for anthracycline cardiotoxicity

in childhood cancer survivors.

METHODS We performed exome sequencing in 289 childhood cancer survivors at least 3 years from anthracycline

exposure. In a nested case-control design, 183 case patients with reduced left ventricular ejection fraction despite low-

dose doxorubicin (#250 mg/m2), and 106 control patients with preserved left ventricular ejection fraction despite

doxorubicin >250 mg/m2 were selected as extreme phenotypes. Rare/low-frequency variants were collapsed to identify

genes differentially enriched for variants between case patients and control patients. The expression levels of 5 top-

ranked genes were evaluated in human induced pluripotent stem cell–derived cardiomyocytes, and variant enrichment

was confirmed in a replication cohort. Using random forest, a risk prediction model that included genetic and clinical

predictors was developed.

RESULTS Thirty-one genes were differentially enriched for variants between case patients and control patients (p <

0.001). Only 42.6% case patients harbored a variant in these genes compared to 89.6% control patients (odds ratio:

0.09; 95% confidence interval: 0.04 to 0.17; p ¼ 3.98 � 10–15). A risk prediction model for cardiotoxicity that included

clinical and genetic factors had a higher prediction accuracy and lower misclassification rate compared to the clinical-only

model. In vitro inhibition of gene-associated pathways (PI3KR2, ZNF827) provided protection from cardiotoxicity in

cardiomyocytes.

CONCLUSIONS Our study identified variants in cardiac injury pathway genes that protect against cardiotoxicity and

informed the development of a prediction model for delayed anthracycline cardiotoxicity, and it also provided new

targets in autophagy genes for the development of cardio-protective drugs. (Preventing Cardiac Sequelae in Pediatric

Cancer Survivors [PCS2]; NCT01805778) (J Am Coll Cardiol CardioOnc 2020;2:690–706) © 2020 The Authors.

Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open access article
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A nthracycline chemotherapy, used in almost
50% of pediatric cancers, is a major cause of
cardiac morbidity in cancer survivors.

Anthracycline cardiotoxicity can manifest as left ven-
tricular (LV) dysfunction and heart failure (1). Sixty
percent of childhood cancer survivors develop echo-
cardiographic cardiac dysfunction, and 10% develop
symptomatic cardiomyopathy up to decades after
chemotherapy (delayed toxicity) (2). Clinical factors
associated with cardiotoxicity include younger age
at exposure, cumulative anthracycline dose, radia-
tion therapy involving the heart, female sex, Afri-
can ethnicity, and pre-existing cardiac dysfunction
(3,4). However, clinical factors have limited ability
to predict patients who are at risk for cardiotoxicity
(5).

Candidate single-nucleotide variant (SNV) and
genome-wide association studies (6–9) have identi-
fied an association with cardiotoxicity of common
exonic and intronic variants in genes involved in
anthracycline transport and metabolism, oxidative
stress, DNA repair, iron metabolism, nicotinamide
adenine dinucleotide phosphate complex, topo-
isomerase 2b expression, and sarcomeric genes (10).
These together explain only a small proportion of
cases and do not consider the contribution of rare
variants that can have larger effects on gene func-
tion (2,11). The objective of our study was to
identify the contribution of rare and low-frequency
SNVs that influence the susceptibility to late
anthracycline cardiotoxicity, to validate the func-
tional role of the affected genes, and to generate an
integrated risk prediction model for anthracycline
cardiotoxicity that combines clinical and genetic
factors (Central Illustration).

METHODS

STUDY COHORT. The PCS2 (Preventing Cardiac
Sequelae in Pediatric Cancer Survivors) study is a

multicenter, prospective, longitudinal cohort
study involving 6 North American sites (12).
Patients followed up in survivor clinics,
age <18 years at the time of anthracycline
exposure, and at least 3 years from their last
anthracycline dose were eligible. Patients
with congenital heart disease were excluded.
Clinical data were collected from medical
records. The anthracycline cumulative dose
was measured in doxorubicin (DOX) equiva-
lents (mg/m2), that is, daunorubicin total
dose multiplied by 0.5, epirubicin total dose
multiplied by 0.6, idarubicin total dose
multiplied by 5, and mitoxantrone total dose
multiplied by 4 (13). LV ejection fraction
(LVEF) was measured by 2-dimensional
echocardiography at enrollment and at 1 and
2 years of follow-up and analyzed at an
independent core laboratory (12). All partici-
pants provided a blood sample at enrollment.
Written informed consent was obtained from
participants/parents/legal guardians, and the
protocol was approved by institutional
Research Ethics Boards. Extreme phenotypes
were selected in a nested case-control design
from the overall cohort. Cases included pa-
tients who received low cumulative anthra-
cycline dose (#250 mg/m2) but developed either: 1)
clinically defined cardiotoxicity, that is, LVEF
of #50% or >10% LVEF decline to #55% from a pre-
vious echocardiogram during follow-up; or 2) low
LVEF of #55% based on American Society of Echo-
cardiography guidelines (14,15). Control patients were
patients with preserved cardiac function (LVEF of
>55%) despite high dose anthracycline (>250 mg/m2).

WHOLE-EXOME SEQUENCING. Whole-exome sequencing
was performed (average: 100� depth) by using the
Illumina (San Diego, California) HiSeq X platform.
High quality paired-end reads (2 � 150 bp) were
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AB BR E V I A T I O N S

AND ACRONYM S

AUC = area under the curve

CI = confidence interval

DMSO = dimethyl sulfoxide

DOX = doxorubicin

GSEA = gene set enrichment

analysis

H2AX = H2A family member X

hiPSC-CM = human induced

pluripotent stem cell–derived

cardiomyocyte

IC50 = half-maximal inhibitory

concentration

LV = left ventricular

LVEF = left ventricular

ejection fraction

MAF = minor allele frequency

mRNA = messenger RNA

OR = odds ratio

PGP = Personal Genome

Project

RF = random forest

SKAT = sequence kernel

association test

SNV = single-nucleotide

variant
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mapped to the human genome reference sequence
(hg19, National Center for Biotechnology Informa-
tion, Bethesda, Maryland) by using the bwa mem
aligner, version 0.7.8 (Wellcome Trust Sanger Insti-
tute, Cambridge, United Kingdom), and variants
were called using the Genome Analysis Toolkit,
version 3.8.0 (16). Variants passing the default
Genome Analysis Toolkit (Broad Institute, Cam-
bridge, Massachusetts) variant caller quality metrics
were annotated by using snpEff, version 4.3
(International Haplotype Map Project, National
Human Genome Research Institute, Bethesda,
Maryland). Quality control filters were applied to
identify SNVs (17). To map ancestry, the top
principal components were calculated using single-
nucleotide polymorphisms common to both the
HapMap (Catalogue of Somatic Mutations in Cancer,
Wellcome Trust Sanger Institute, Cambridge, United
Kingdom) and PCS2 cohort with minor allele fre-
quency (MAF) of >0.01 and Hardy-Weinberg equi-
librium p > 1.00 � 10–6. Common (MAF: >0.05) and
variants associated with cancer in the COSMIC

(Catalogue of Somatic Mutations in Cancer) database
were excluded (18,19).
VARIANT BURDEN ANALYSIS USING GENE-COLLAPSING

METHODS. All rare and low-frequency variants were
collapsed within genes to generate a gene-level
variant score in every sample. Three gene-based as-
sociation analyses were performed: 1) burden com-
bined multivariate and collapsing, which assumes
that all functional variants in the gene have effects in
the same direction (20); 2) sequence kernel associa-
tion test (SKAT), a variance-component test that as-
sumes that a variant can have either a positive or a
negative effect (21); and 3) SKAT-optimized, a com-
bination of these 2 methods (22). The association
analyses were adjusted for sex, cancer diagnosis, age
at the start of anthracycline, use of dexrazoxane,
chest radiation, duration of follow-up from first
anthracycline dose, and the first 2 principal compo-
nents inferring ethnicity. Genes with an association p
value of <0.001 by at least 2 gene-collapsing methods
and genes in biologically relevant pathways with an
association of p < 0.001 by at least 1 method were

CENTRAL ILLUSTRATION An Integrated Precision Approach to Predict Anthracycline
Cardiotoxicity

Chaix, M.-A. et al. J Am Coll Cardiol CardioOnc. 2020;2(5):690–706.

Whole-exome sequencing data from 289 pediatric cancer survivors with extreme phenotypes identified a higher burden of rare variants in

control patients compared to case patients in 31 biologically relevant genes. The top-ranked genes were functionally evaluated in human

induced pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs) and variant enrichment was confirmed in a replication cohort. Targeted

pathway inhibitors were more effective at reducing anthracycline-induced injury than dexrazoxane. Using random forest, clinical and genetic

predictors were integrated into a prediction model for anthracycline cardiotoxicity.
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included in downstream analysis and model devel-
opment. Genome-wide significance was defined as a
nominal p < 2.87 � 10�6 by using Bonferroni correc-
tion based on 17,382 genes. Results are presented as
odds ratio (ORs) with 95% confidence intervals (CIs).
Genes significantly associated with case/control sta-
tus were further analyzed after adjustment for cu-
mulative anthracycline dose and use of concomitant
cardiotoxic drugs by using logistic regression.

PATHWAY ANALYSIS. Prioritized genes were included
in a gene network analysis using GeneMania (23).
Gene set enrichment analysis (GSEA) was performed
by using the Java implementation of GSEA version 3.0
(Broad institute, Inc., Massachusetts Institute of
Technology, Cambridge, Massachusetts) (24). The
Fisher exact test p value comparing the enrichment of
variants between case patients and control patients
was used for gene ranking. GSEA was run using Gene
Ontology pathways, version 6, with 1,000 permuta-
tions. A p value of <0.001 was considered significant.
Prioritized genes were functionally evaluated in
human cardiomyocytes.

FUNCTIONAL EVALUATION OF PRIORITIZED

GENES. Dif ferent ia t ion of human induced
plur ipotent stem cel l s into card iomyocytes . To
ascertain the functional role of the prioritized genes
in cardiotoxicity, human induced pluripotent stem
cell–derived cardiomyocytes (hiPSC-CMs) were
generated. Two previously published hiPSC cell
lines (PGP17_11 and PGP14_26), reprogrammed from
lymphocytes taken from 2 healthy male donors in
the Personal Genome Project (PGP) were used (25).
We confirmed the absence of pathogenic or likely
pathogenic SNVs (based on American College of
Medical Genetics criteria) in known cardiotoxicity
genes and genes identified in our study in the
donors through interrogation of vcf files
downloaded from the PGP-Canada website (26). The
STEMdiff Cardiomyocyte Differentiation Kit
(STEMCELL Technologies, Vancouver, Canada) was
used to differentiate hiPSCs into CMs in accordance
with our previously published differentiation
protocol (26). At day 16, cells were dissociated,
reseeded, and maintained in STEMdiff
Cardiomyocyte Maintenance medium (STEMCELL
Technologies), which was replaced every 2 days, in
80% relative humidity levels and 5% CO2 levels, to
generate beating CMs.

Cel l contract i l i ty . hiPSC-CMs at day 16 were seeded
(40,000 cells/well) in 150 ml iCell (Stony Brook, New
York) maintenance medium in 48-well electronic
microtiter plates (E-Plate Cardio 96, Agilent, Santa

Clara, California) that contain gold microelectrode
arrays fused to the bottom of each well (coated with
fibronectin). Experiments were performed on day 34,
when they exhibit a more mature phenotype, with
regular contractility, stable electrical signals, and
sarcomeric organization. CMs were treated with 0.01,
0.1, and 0.5 mmol/l of doxorubicin hydrochloride
(DOX) (product no. D1515, Sigma-Aldrich, St. Louis,
Missouri) on day 34 for 24 h. Cell index derived from
change in impedance values, a measure of contrac-
tility and viability, was recorded and analyzed by
using the xCELLigence RTCA Cardio system (Agilent,
Santa Clara, California) (27).
Metabol i c ac t iv i ty and cel l v iab i l i ty . hiPSC-CMs
at day 16 were seeded (40,000 cells/well) in 96-well
plates, treated with DOX on day 34, and incubated
with a 1:100 dilution of PrestoBlue Cell Viability Re-
agent (Life Technologies, no. A13261, Carlsbad, Cali-
fornia) a resazurin-based assay that uses the reducing
environment of cells to measure metabolic activity
and cell viability, for 1.5 h at 37�C. The average fluo-
rescence values at 560/590 nm (excitation/emission)
of the empty control wells were subtracted from that
of the experimental wells to provide relative fluo-
rescence units.
Immunofluorescence for DNA damage markers. hiPSC-
CMs at day 16 were seeded in black 24-well glass
bottom plates for confocal microscopy and treated
with DOX for 24 h on day 34. After fixation with 4%
paraformaldehyde, the cells were incubated with
1:1,000 monoclonal mouse g-H2A family member X
(H2AX) (phospho S139) (Abcam, ab26350, Cambridge,
United Kingdom) for 24 h to measure double-
stranded DNA breaks and incubated with 1:100
Alexa Fluor 488 conjugated secondary antibody
(Thermo Fisher Scientific, A21042, Waltham, Massa-
chusetts). Images were taken on WaveFX-X1 spinning
disk confocal system (Quorum Technologies Inc.,
Guelph, Canada) by using a Hamamatsu (Hamamatsu
City, Japan) C9100-13 electron multiplying charge
coupled device camera. Volocity software (Perkin
Elmer, Waltham, Massachusetts) was used for the
quantification of nuclear g-H2AX foci.
Messenger RNA express ion in h iPSC-CMs . Quan-
titative reverse-transcription polymerase chain reac-
tion (RT-qPCR) was performed on hiPSC-CMs to
measure change in messenger RNA (mRNA) expres-
sion of selected genes following 24 h of DOX exposure.
Total RNA was extracted from the hiPSC-CMs by using
the TRIzol reagent phenol-chloroform extraction
protocol (Thermo Fisher Scientific, Waltham, Massa-
chusetts). Complementary DNA was synthesized from
the pooled RNA (200 ng RNA per sample) by using
SuperScript III Reverse Transcriptase (Life
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Technologies, Carlsbad, California). RT-qPCR was
performed by using different primer pairs
(Supplemental Table 1). mRNA expression levels were
normalized to the housekeeping gene, glyceraldehyde
3-phosphate dehydrogenase, and expressed relative
to the reference group. SYBR GreenER qPCR SuperMix
(Thermo Fisher Scientific, Waltham, Massachusetts)
was used for transcription and amplification (ViiA7
qPCR system, Applied Biosystems, Waltham, Massa-
chusetts) by using a total volume of 12 ml and 40 2-step

cycles. Relative mRNA expression was quantified by
using the 2–(DDCT) method that calculates the differ-
ences in fluorescence levels at the threshold cycle
between the target and reference genes (28). Genes
that showed up-regulation following DOX exposure
were prioritized for drug testing. Experiments were
performed with 3 independent biological replicates,
each containing 3 technical replicates.
Drug test ing . To determine the effect of target gene
inhibition on DOX-induced cardiotoxicity, CMs were

FIGURE 1 Study Cohort and CONSORT Diagram

(A) Study cohort: Scatterplot showing the distribution of left ventricular ejection fraction (LVEF) against anthracycline cumulative dose, with

control patients in blue (n ¼ 121), case patients in red (n ¼ 238), and the rest in gray (n ¼ 357). (B) Consolidated Standards of Reporting Trials

(CONSORT) diagram: selection of case and control patients for exome sequencing in the discovery cohort. *Participants with complete data

and good-quality DNA. PCS2 ¼ Preventing Cardiac Sequelae in Pediatric Cancer Survivors.
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treated with 3 doses of DOX (0.01 mmol/l, 0.1 mmol/l,
and 0.5 mmol/l) with or without 24 h of pre-treatment
with 0.1 mmol/l of dimethyl sulfoxide (DMSO) or in-
hibitors of the protein products. One mmol/l DOX was
associated with cell death and was not used (data not
shown). The DOX doses were consistent with previ-
ously published studies (29,30). The inhibitors
included: 1) dexrazoxane, an iron chelator (Sigma-
Aldrich, St. Louis, Missouri, product no. D1446); 2)
TGX-221, a PI3KR2 inhibitor (Selleckchem, Burling-
ton, Ontario, Canada, product no. S1169); 3) rapamy-
cin, an inhibitor of mammalian target of rapamycin, a
protein kinase complex downstream of phosphoino-
sitide 3-kinase, and (iv) metformin hydrochloride, an
inhibitor of TR4, a nuclear receptor involved in zinc-
finger protein, ZNF827, recruitment (Sigma-Aldrich,
St. Louis, MO, product no. PHR1084) (31,32). Three
inhibitor concentrations (0.01 mmol/l, 0.1 mmol/l, and
1 mmol/l) were studied, and the highest nontoxic dose
was selected similar to published studies (33). All
drugs were prepared in STEMdiff Cardiomyocyte
Maintenance serum-free medium. The half-maximal
inhibitory concentration (IC50) values, that is, the
drug dose required to inhibit a biological process by
50%, were obtained through GraphPad prism 8
(GraphPad Software Inc., San Diego, California) by
using a nonlinear regression analysis function. The
goodness of fit was determined by using coefficient of
determination, R2.
REPLICATION COHORT. The replication cohort
comprised a subset of patients with recent enrollment
in the PCS2 study. Patients meeting the clinical defi-
nition of cardiotoxicity, that is, LVEF of #50% or
>10% LVEF drop to #55% from a previous echocar-
diogram independent of anthracycline dose, were
defined as case patients (15). Control patients were
defined by LVEF >55%. Case and control patients
were propensity-matched by using a logistic regres-
sion model that included known clinical factors (cu-
mulative anthracycline dose, sex, cancer type, age at
first anthracycline dose, follow-up duration, use of
dexrazoxane, and chest radiation). The propensity
score was used to create a 1:1 propensity-matched set
by using a greedy algorithm (34). The prioritized
genes were sequenced by using targeted exome
sequencing in the replication cohort. Exome-enriched
libraries were prepared with the Agilent (Santa Clara,
California) Sureselect XT Custom Kit (1 to 499 kilo
base pairs, 16 reactions/package) and sequenced on
an Illumina HiSeq4000 (2 � 100–base pair paired-end
reads). After collapsing variants within genes, gene
association with cardiotoxicity was evaluated using
burden analysis (chi-square test) and a nonparametric
test accounting for matched pairs (McNemar test) to

compare the proportion of discordant pairs between
case versus control patients (i.e., pairs where a case
patient had a variant and the matched control patient
did not, or vice versa). All analyses were performed
by using SAS, version 9.4 (SAS Institute, Inc., Cary,
North Carolina).

RANDOM FOREST MODEL FOR RISK PREDICTION.

To develop a prediction model for anthracycline car-
diotoxicity, we developed 3 machine learning algo-
rithms using clinical factors alone (sex, age at first
anthracycline dose, follow-up duration, the first
2 principal components inferring ethnicity, treatment
exposures [i.e., anthracycline dose, use of dexrazox-
ane, and chest radiation], genetic factors alone
(significantly associated genes) and a combination of
clinical and genetic factors. The stratified boot-
strapping sampling scheme was applied to generate
1,000 replicates by using the discovery cohort. Each
replicate was a pair of independent randomly
selected training and testing sets with the testing set
corresponding to samples not selected in the training
set. A random forest (RF) classifier, based on
ntree ¼ 500, was applied to each replicate to predict
cases with cardiotoxicity based on the 3 models
(clinical, genetic, and combined). RF aggregates the
votes from different decision trees to determine the
prediction. For each replicate, we trained the RF
model in a training set and evaluated the model
performance in the testing set. All accuracy measures
(receiver operator characteristic, area under the curve

TABLE 1 Clinical Characteristics of the Study Cohort (N ¼ 289)

Control Patients
(n ¼ 106)

Case Patients
(n ¼ 183) p Value

Female 57 (53.8) 92 (50.3) 0.566

Age at start of anthracycline, yrs 6.0 (2.0–10.0) 4.0 (2.0–7.0) 0.018

Cumulative anthracycline dose in doxorubicin
equivalent dose, mg/m2

371 � 115 128 � 59 <0.001

Use of dexrazoxane 13 (12.6) 2 (1.1) <0.001

Radiation therapy involving the heart 44 (41.5) 64 (35.0) 0.268

Cancer diagnosis <0.001

Leukemia (AML, ALL) 40 (37.7) 94 (51.4) 0.049

Sarcoma (osteosarcoma, Ewing,
rhabdomyosarcoma)

28 (26.4) 2 (1.1) <0.001

Neuroblastoma, hepatoblastoma 18 (17.0) 13 (7.1) 0.009

Lymphoma (NHL, HL) 10 (9.4) 35 (19.1) 0.029

Wilms tumor 2 (1.9) 23 (12.6) 0.002

LVEF at last follow-up, % 61.3 � 6.7 51.7 � 2.8 <0.001

Time from first anthracycline dose to
last follow-up echocardiogram, yrs

8.5 (5.0–12.3) 9.0 (6.0–12.3) 0.854

Duration of treatment, days 373.3 � 1,080.5 182.0 � 282.5 0.026

Values are n (%), median (interquartile range), or mean � SD.

AML ¼ acute myeloid leukemia; ALL ¼ acute lymphocytic leukemia; HL ¼ Hodgkin lymphoma; LV ¼ left
ventricular; NHL ¼ non-Hodgkin lymphoma.
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[AUC], sensitivity, specificity, positive predictive
value, negative predictive value (NPV), false positive
rate, false negative rate] and misclassification rates
were compared over 1,000 replicates, and observed
versus predicted case status was calculated with 0.5
probability cutoff for each replicate. Within each
replicate, accuracy measures and misclassification
rates were estimated in the training set and the
testing set. The overall accuracy measure was the
sum of the accuracy measures and the misclassifica-
tion rates from the training set and the paired testing
set, weighted by 0.368 and 0.632, respectively. This
was repeated for all 3 RF models.

RESULTS

COHORT CHARACTERISTICS. A total of 716 partici-
pants enrolled in the PCS2 study met eligibility
criteria. The discovery cohort for exome sequencing
included 289 participants, including 183 case and
106 control patients (Figure 1). Clinical characteris-
tics are shown in Table 1. Case patients were
younger at the time of anthracycline therapy
(p ¼ 0.012), but follow-up duration was not different
between case and control patients. As expected
from the selection criteria, the LVEF and the cu-
mulative anthracycline dose were lower in case pa-
tients compared to control patients (p < 0.001). The
duration of treatment was correlated with cumula-
tive anthracycline dose (Spearman rho: 0.54; p <

0.001). Concordant with a lower cumulative
anthracycline dose, case patients had a higher fre-
quency of Wilms tumor (p ¼ 0.002) and were less
likely to have received dexrazoxane (p < 0.001). No
sex-based differences were observed between case
and control patients.

VARIANTS IDENTIFIED ON EXOME SEQUENCING.

Average sequencing coverage was 99� (range: 69 to
234�). A total of 9,092,459 SNVs were identified. Af-
ter excluding common variants (MAF: >0.05), we
identified 110,558 rare/low-frequency non-
synonymous SNVs in 17,382 unique genes in the
cohort. Principal component analysis was performed
by using 332,033 common SNVs (MAF: >0.01 in
Genome Aggregation Database) mapped to HapMap to
ascertain the distribution of ethnicity in the study
cohort (Supplemental Figure 1).
GENE-ASSOCIATION ANALYSIS. After collapsing
variants within genes, we identified 48 unique genes
associated with cardiotoxicity—29 genes by burden
combined multivariate and collapsing, 25 genes by
SKAT, and 29 genes by SKAT-optimized (p < 0.001).
No single gene reached exome-wide significance
(Supplemental Figures 2 and 3). Of the 48 genes, 28
showed differential enrichment by at least 2 methods
(p < 0.001), and 3 additional genes previously impli-
cated in cardiotoxicity were identified by at least 1
method (p < 0.001) (Figures 2A and 2B, Supplemental
Tables 2 and 3). Variant burden analysis showed that

FIGURE 2 Genes Associated With Anthracycline Cardiotoxicity

(A) A total of 28 genes showed differential enrichment between case and control patients by at least 2 methods (p < 0.001), and 3 additional

biologically relevant genes (orange) were significant by at least 1 method. (B) Burden of rare and low-frequency single-nucleotide variants in

the 31 prioritized genes was higher in control patients compared to case patients (p < 0.001). (C) Forest plot showing the estimated odds

ratios (95% confidence intervals) for the 31 top genes in case versus control patients using Fisher exact test. Genes in bold were prioritized

for functional studies.
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fewer case patients (42.6%) compared to control pa-
tients (89.6%) harbored a variant in these 31 genes
(OR: 0.09; 95% CI: 0.04 to 0.17; p ¼ 3.98 � 10–15)
(Figure 2C). Frequency of multiple variants was also
lower in case patients (21%) compared to control pa-
tients (71%) (OR: 0.11; 95% CI: 0.06 to 0.19; p ¼ 4.74 �
10–17). In a subset of 78 cases limited to LVEF of #50%
or >10% LVEF decline to #55% from a previous

echocardiogram, the variant burden remained lower
in the case patients (42.3%) compared to the control
patients (89.6%) (OR: 0.08; 95% CI: 0.04 to 0.18;
p ¼ 5.46 � 10–12). In subgroup analysis of 80 case
patients and 63 control patients with self-reported
White ethnicity, variant burden was again lower in
case patients (72%) compared to control patients
(89%) (OR: 0.33; 95% CI: 0.13 to 0.83; p ¼ 0.019).

FIGURE 3 Pathways Associated With Anthracycline Cardiotoxicity

(A) GeneMania analysis identified 46 interacting genes, including 26 of the 31 top genes. Large circles represent significantly associated

genes; small circles represent other interacting genes. Physical interaction (pink lines), coexpression (purple lines), colocalization (blue

lines), shared protein domains (gray-yellow lines), genetic interaction (green lines), and predicted (orange lines). (B) Gene set enrichment

analysis identified the top-ranked pathways to which the genes mapped (p < 0.001). The solid bar shows number of significant genes in each

pathway (p < 0.001); the dashed bar represents the total genes.
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Therefore, absence of these protective variants was
associated with risk of anthracycline cardiotoxicity.
Logistic regression adjusted for anthracycline dose
and the use of concomitant cardiotoxic agents
showed that the 31 genes remained significant with
similar ORs in unadjusted and adjusted analyses
(Supplemental Table 4).

GENE CHARACTERIZATION AND PATHWAY ANALYSIS.

The functions of the 31 prioritized genes are sum-
marized in Supplemental Table 5. Most genes
belonged to the PI3K/AKT/mTOR pathway and p53
signaling pathways. The PI3K pathway was also 1 of
the 6 pathways showing differential enrichment
between case and control patients using GeneMania
(Figures 3A and 3B). ZNF827, ELAC2, SEC62, USP42,
and PIK3R2 were selected for functional analysis
based on 1 or more of the following additional criteria:
biological relevance, protein expression in the human
heart (Supplemental Table 5), and mRNA expression
in hiPSC-CMs.

FUNCTIONAL EVALUATION IN hiPSC-CMs. DOX
decreased CM viab i l i ty and increased ZNF827 ,
ELAC2 , and PI3KR2 express ion . A 24-hour
treatment with DOX resulted in a dose-dependent
decrease in cell index in hiPSC-CMs (Figure 4A), as
well as in metabolic activity and proliferation
(Figure 4B). Treatment with 0.1 mmol/l DOX caused
an increase in g-H2AX nuclear foci, a marker of
double-stranded DNA breaks, compared to untreated

cells (p ¼ 0.039) (Figures 4C and 4D). DOX treatment
up-regulated mRNA expression of ZNF827
(p ¼ 0.001), ELAC2 (p ¼ 0.012), and PI3KR2
(p ¼ 0.016) compared to DMSO but did not change
SEC62 and USP42 mRNA expression (Figure 5A).
Based on the availability of targeted inhibitors, we
selected PI3KR2 and ZNF827 for further study.

Target gene inh ib i t ion prevented DOX- induced
card iotox ic i ty . iPSC-CMs from 2 healthy in-
dividuals were pre-treated for 24 h before DOX
exposure with either a nontargeted inhibitor, dexra-
zoxane (iron chelator), or with targeted inhibitors:
TGX-221 (PI3KR2 inhibitor), rapamycin (mTOR inhib-
itor downstream of PI3KR2), or metformin (ZNF827
inhibitor) (Supplemental Table 6). Dose-response
curves of DOX-induced decrease in CM viability
were generated, and the IC50 values for DOX (i.e., the
dose of DOX that causes a 50% decrease in viability)
were determined (Figures 5B and 5C). The goodness of
fit R2 values were >0.9 for all IC50 curves. A higher
IC50 indicates lower drug potency or need for a higher
drug dose to cause 50% target effect. The IC50 values
(95% CI) of DOX demonstrated that targeted in-
hibitors, TGX-221 and metformin, were effective at
blocking DOX-induced decrease in CM viability in
both lines. Metformin was superior in its car-
dioprotective effect compared to dexrazoxane in both
lines, and TGX-221 was superior in PGP17 and com-
parable to dexrazoxane in PGP14 (Table 2). Therefore,
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pharmacologic disruption of gene-associated path-
ways was cardioprotective, similar to the presence of
putatively disruptive genetic variants in these
pathways.

REPLICATION OF FUNCTIONALLY VALIDATED

GENES. Variant burden in the top 2 genes, PI3KR2
and ZNF827, was compared between 30 case patients
and 30 propensity-matched control patients in the
replication cohort (Supplemental Table 7). There was
a lower variant burden in PI3KR2 in case patients
(6.7%) compared to control patients (26.7%) (OR:
0.196; 95% CI: 0.038 to 1.02; p ¼ 0.038). McNemar test
identified PIK3R2 as the gene with the highest

number of discordant pairs (n ¼ 10). Although not
statistically significant (p ¼ 0.114), 8 of the 10 pairs
involved variants present in control patients but ab-
sent in case patients. This difference was nominally
significant on conditional logistic regression
(p ¼ 0.08). No test could be performed for 11 genes
that did not harbor variants in the replication cohort,
which reduced our power to detect discordant pairs.
A comparison of variants in ZNF827 could not be
performed because only 2.4% of the cohort harbored
a variant, all of which were in control patients.

RF RISK PREDICTION MODELING. We trained 3 RF
prediction models in a training set and evaluated

FIGURE 4 Effect of Anthracycline in hiPSC-CMs

(A) The 24-h DOX treatment caused a dose-dependent decrease in cell function and viability in hiPSC-CMs measured using the cell index. (B) Presto blue cell viability

assay demonstrated a decrease in metabolic activity and proliferation with increasing DOX doses. The values represent the average relative fluorescence from 3 in-

dependent experiments. (C) Representative immunofluorescence images showing increased g-H2AX staining (green) (white arrow), a DNA damage marker, in the nuclei

(blue DAPI staining) of DOX-treated cells. (D) DOX treatment increased average g-H2AX foci per nucleus compared to untreated cells. Error bars represent mean � SD

for 3 independent biological replicates. *p < 0.05; ***p < 0.001. CMC ¼ combined multivariate and collapsing; DAPI ¼ 40,6-diamidino-2-phenylindole;

DMSO ¼ dimethyl sulfoxide; DOX ¼ doxorubicin; H2AX ¼ H2A family member X; hiPSC-CM ¼ human induced pluripotent stem cell–derived cardiomyocyte;

mM ¼ mmol/l.
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their performance in the testing and overall set
(Table 3). We chose a random resampling approach,
which is superior to a training/validation split in
the absence of an external validation cohort. Box-
plots of the accuracy measures are shown in
Figures 6A to 6C. The clinical RF model had the
lowest performance across all accuracy measures
and higher misclassification rate compared to the
genetic and combined models. The performance
metrics of the 3 models in the training set, the
testing set, and overall dataset are shown in
Table 3. In the testing set, the AUC for the clinical
model was 0.59 (95% CI: 0.51 to 0.67), for the ge-
netic model was 0.71 (95% CI: 0.63 to 0.80), and
for the combined model was 0.72 (95% CI: 0.63 to
0.80) (Figure 6D). The combined model out-
performed the clinical model with a higher AUC,
higher specificity, higher positive predictive value,
and a lower misclassification rate.

DISCUSSION

Despite dose-dependent anthracycline cardiotoxicity,
only a proportion of patients who receive high-dose
anthracycline develop cardiotoxicity (35). Our find-
ings showed that almost 90% of patients without
cardiotoxicity harbored rare/low-frequency variants
in cardiac injury pathways that likely protected them
from the damaging effects of anthracycline. In
contrast, <50% of patients with cardiotoxicity
harbored these protective variants. The resistance to
cardiotoxicity with disruption of these pathways was
confirmed through pharmacological inhibition of the
pathways in human CMs. Using these genetic findings
in combination with clinical risk predictors, we
developed and internally validated a prediction
model and demonstrated its superiority to the clinical
model in predicting cardiotoxicity. Furthermore, we
identified potentially druggable pathways of

FIGURE 5 Effect of Targeted Gene Inhibition on DOX-Induced Cardiotoxicity in hiPSC-CMs

(A) RT-qPCR analysis of PGP17 hiPSC-CMs (3 biological replicates, each containing 3 technical replicates) treated with 0.1 mmol/L DOX

demonstrated a significant increase in gene expression levels of ZNF827, ELAC2, and PI3KR2. (B) PGP17 and (C) PGP14 hiPSC-CMs were pre-

treated with DMSO or an inhibitor for 24 h and then exposed to DOX for 24 h. Dose-response curves for cell index, that is, CM viability, and

IC50 values for DOX with and without inhibitors are shown. Data are mean � SD for 3 independent replicates. *p < 0.05; **p < 0.01.

PGP ¼ Personal Genome Project; RT-qPCR ¼ quantitative reverse transcription polymerase chain reaction; other abbreviations as in

Figure 4.
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cardiotoxicity that may offer better cardioprotection
than currently available drugs like dexrazoxane. A
strength of our study was its prospective longitudinal
design with adjustment for length of follow-up,
which minimized potential misclassification of case
and control patients, as well as confirmation of our
findings through functional validation and replica-
tion studies.

RARE VARIANT CONTRIBUTION TO ANTHRACYCLINE

CARDIOTOXICITY. Previous single-nucleotide poly-
morphism association studies have identified

common variants associated with anthracycline car-
diotoxicity, often in pharmacokinetic genes, that ac-
count for a relatively small proportion of cases (10).
Often these studies did not account for clinical and
treatment differences, differences in anthracycline
dose, or differences in follow-up between case and
control patients. An important rationale for an
extreme phenotype approach stratified by anthracy-
cline dose was to enrich our cohort for rare and low-
frequency variants that are expected to have a
stronger effect on phenotype rather than only com-
mon variants. An extreme phenotype design is su-
perior to a simple case-control design for detecting
rare risk variants, especially protective variants (36).
To minimize bias related to an imbalance in cancer
types between case and control patients, we excluded
cancer-causing variants and adjusted our analysis for
cancer diagnosis.

Of the differentially enriched genes in our study,
only CELF4 has been previously reported as a car-
diotoxicity gene in human studies (8,37). ZNF827 and
PI3KR2, which demonstrated a higher variant burden
in control patients compared to case patients, are
involved in autophagy, a pathway known to be
involved in anthracycline cardiotoxicity and cardio-
vascular disease. PI3KR2 encodes the p85b isoform, a
regulatory subunit involved in autophagy inhibition
through the phosphoinositide dependent kinase-1
and protein kinase B signaling pathway (38).
Although we did not measure autophagy, we did find
PI3KR2 up-regulation and accumulation of DNA
damage with DOX that may be related to impaired
autophagy-mediated DNA repair (39). TGX-221, a se-
lective inhibitor of PI3KR2, yielded a greater car-
dioprotective effect against DOX compared to
dexrazoxane, an iron chelator. Importantly, preclini-
cal tumor studies have reported that PI3KR2 inhibi-
tion reduces tumorigenicity, suggesting that
targeting PI3KR2 could mediate a cardioprotective
effect without being tumor protective, one of the
main concerns with the use of dexrazoxane (40,41).

We also noted an important role for ZNF827 in
anthracycline cardiotoxicity through enrichment of
variants in control patients, increased mRNA
expression on DOX exposure in CMs, and protection
against DOX cardiotoxicity with metformin. Metfor-
min, involved in 50 adenosine monophosphate–acti-
vated protein kinase signaling, suppresses the
activation of the nuclear receptor TR4, which in turn
inhibits the recruitment of ZNF827 and consequently
induces cardiac autophagy. Studies have demon-
strated a cardioprotective effect of metformin in
DOX-induced cardiotoxicity in rats through normal-
ized autophagy processes (32). Our finding of the

TABLE 2 IC50 Values (95% CI) of DOX and Inhibitors in hiPSC-CMs Derived From PGP17

and PGP14 Individuals

PGP17_11 PGP14_26

IC50 p Value vs. DOX IC50 p Value vs. DOX

Doxorubicin 0.09 (0.04–0.16) 0.21 (0.14–0.31)

TGX-221 0.71 (0.51–0.98) 0.045 0.49 (0.33–0.72) 0.043

Metformin 0.58 (0.43–0.78) 0.017 0.98 (0.56–1.80) 0.039

Rapamycin 0.26 (0.14–0.44) 0.178 0.26 (0.17–0.39) 0.164

Dexrazoxane 0.22 (0.15–0.33) 0.077 0.61 (0.43–0.88) 0.047

CI ¼ confidence interval; DOX ¼ doxorubicin; hiPSC-CMs ¼ human induced pluripotent stem cell-derived car-
diomyocytes; IC50 ¼ half-maximal inhibitory concentration; PGP ¼ Personal Genome Project.

TABLE 3 Accuracy Measures for Prediction Models of Anthracycline Cardiotoxicity

Accuracy
Measure Dataset Clinical Model Genetic Model

Combined Clinical
and Genetic Model

AUC Training 0.9990 � 0.0026 0.8996 � 0.0216 0.9923 � 0.0063

Testing 0.5896 � 0.0431 0.7133 � 0.042 0.7156 � 0.0421

Overall 0.7403 � 0.0273 0.7819 � 0.0262 0.8174 � 0.0267

Sn Training 0.9980 � 0.0053 0.8232 � 0.0457 0.9846 � 0.0127

Testing 0.4317 � 0.0885 0.5552 � 0.0827 0.5254 � 0.0836

Overall 0.6401 � 0.056 0.6538 � 0.054 0.6944 � 0.0528

Sp Training 1.0000 � 0.0004 0.9760 � 0.0168 0.9999 � 0.0008

Testing 0.7475 � 0.0682 0.8715 � 0.0513 0.9057 � 0.047

Overall 0.8404 � 0.0431 0.9100 � 0.035 0.9404 � 0.0297

PPV Training 1.0000 � 0.0005 0.9609 � 0.0254 0.9999 � 0.0011

Testing 0.4885 � 0.0749 0.7259 � 0.0820 0.7623 � 0.0942

Overall 0.6767 � 0.0473 0.8124 � 0.0544 0.8498 � 0.0595

NPV Training 0.9986 � 0.0035 0.8893 � 0.0253 0.9896 � 0.0084

Testing 0.7058 � 0.0384 0.7684 � 0.0376 0.777 � 0.0365

Overall 0.8135 � 0.0243 0.8129 � 0.0239 0.8552 � 0.0231

MC Training 0.0008 � 0.0021 0.0864 � 0.0182 0.0063 � 0.0051

Testing 0.3652 � 0.0423 0.2465 � 0.0385 0.2297 � 0.0373

Overall 0.2311 � 0.0268 0.1876 � 0.0241 0.1475 � 0.0237

FPR Training 0.0000 � 0.0002 0.0141 � 0.0098 0.0000 � 0.0005

Testing 0.1632 � 0.0457 0.0807 � 0.0325 0.0610 � 0.0308

Overall 0.1032 � 0.0289 0.0562 � 0.0220 0.0386 � 0.0195

FNR Training 0.0008 � 0.0021 0.0723 � 0.0185 0.0063 � 0.0051

Testing 0.2020 � 0.0365 0.1658 � 0.0333 0.1687 � 0.0334

Overall 0.1279 � 0.0231 0.1314 � 0.0215 0.1089 � 0.0211

Values are mean � SD.

AUC ¼ area under the curve; FNR ¼ false negative rate; FPR ¼ false positive rate; MC ¼ misclassification;
NPV ¼ negative predictive value; PPV ¼ positive predictive value; Sn ¼ sensitivity; Sp ¼ specificity.
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cardioprotective effect of metformin, an antidiabetic
drug, in human CMs suggests a promising potential
for drug repurposing of metformin for protection
against anthracycline cardiotoxicity.

MACHINE LEARNING IN RISK PREDICTION

MODELING. An important outcome of our study was
the development of a prediction model for anthracy-
cline cardiotoxicity using a combination of genetic

FIGURE 6 Accuracy Measures of Prediction Models Using Random Forest

Boxplots representing the accuracy measures for the overall dataset, the testing set, and the training set for the (A) clinical model, (B) genetic model, (C) combined

model, and (D) receiver operator characteristic AUC for model-derived prediction of anthracycline cardiotoxicity. Clinical model AUC: 0.59 (black), genetic model AUC:

0.71 (blue), combined model AUC: 0.72 (red). AUC ¼ area under the curve; FNR ¼ false negative rate; FPR ¼ false positive rate; MC ¼ misclassification; NPV ¼ negative

predictive value; PPV ¼ positive predictive value; Sens ¼ sensitivity; Sn ¼ sensitivity; Sp ¼ specificity; Spec ¼ specificity.
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and clinical factors that outperformed the clinical
model. In particular, the combined model had high
specificity, good sensitivity, and a low misclassifica-
tion rate. Although this model is exploratory and re-
quires external validation, a model with high
specificity is desirable for the identification of at-risk

individuals with high confidence in whom the modi-
fication of chemotherapy or use of cardioprotective
agents could be justified. By avoiding overestimation
of the risk of anthracycline cardiotoxicity, it would
prevent withholding life-saving anthracycline in pa-
tients who are not at high risk.

FIGURE 6 Continued
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STUDY LIMITATIONS. The study was limited to late
cancer survivors, and therefore, early cardiotoxicity
was not explored. Independent validation of this
prediction model is needed in an external replication
cohort. Permutation tests for genes were not per-
formed, which could provide additional support for
the findings from SKAT/SKAT-optimized and burden
analysis. Although we confirmed that the iPSCs did
not harbor pathogenic variants in known cardiac
genes, iPSC-CM studies from additional individuals
with different genetic backgrounds would be helpful
because all variants pre-disposing to cardiotoxicity
may not have been considered. Finally, although
exome sequencing enables the discovery of rare and
low-frequency variants in coding regions of genes, it
excludes common variants in noncoding regions that
may have an association with cardiotoxicity;
furthermore, studies that combine the contribution of
rare and common variants is warranted.

CONCLUSIONS

Childhood cancer survivors with rare variants in
genes involved in cardiac injury pathways have a
lower susceptibility to anthracycline cardiotoxicity.
Incorporating these genetic factors into a prediction
model helped identify individuals at lower risk
for anthracycline cardiotoxicity with high specificity.
This knowledge may be useful in the future to
individualize anthracycline-based chemotherapy
tailored to a patient’s risk for cardiotoxicity.
The identification of promising biological targets
involved in autophagy (PI3KR2 and ZNF827) will
inform the development and/or repurposing of car-
dioprotective agents in patients receiving anthracy-
clines. Thus, our study shows the power of a precision
approach in informing strategies for tailored man-
agement of childhood cancer patients.
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