8,676 research outputs found
Hempstead Union Free School District and United Public Service Employees Union
In the matter of the fact-finding between the Hempstead Union Free School District, employer, and the United Public Service Employees Union, union. PERB case no. M2009-300. Before: Stuart L. Bass, fact finder
Cation mono- and co-doped anatase TiO nanotubes: An {\em ab initio} investigation of electronic and optical properties
The structural, electronic, and optical properties of metal (Si, Ge, Sn, and
Pb) mono- and co-doped anatase TiO nanotubes are investigated, in order
to elucidate their potential for photocatalytic applications. It is found that
Si doped TiO nanotubes are more stable than those doped with Ge, Sn, or
Pb. All dopants lower the band gap, except the (Ge, Sn) co-doped structure, the
decrease depending on the concentration and the type of dopant.
Correspondingly, a redshift in the optical properties for all kinds of dopings
is obtained. Even though a Pb mono- and co-doped TiO nanotube has the
lowest band gap, these systems are not suitable for water splitting, due to the
location of the conduction band edges, in contrast to Si, Ge, and Sn mono-doped
TiO nanotubes. On the other hand, co-doping of TiO does not improve
its photocatalytic properties. Our findings are consistent with recent
experiments which show an enhancement of light absorption for Si and Sn doped
TiO nanotubes.Comment: revised and updated, 23 pages (preprint style), 7 figures, 5 table
An explicit KO-degree map and applications
The goal of this note is to study the analog in unstable -homotopy theory of the unit map from the motivic sphere spectrum to the
Hermitian K-theory spectrum, i.e., the degree map in Hermitian K-theory. We
show that "Suslin matrices", which are explicit maps from odd dimensional split
smooth affine quadrics to geometric models of the spaces appearing in Bott
periodicity in Hermitian K-theory, stabilize in a suitable sense to the unit
map. As applications, we deduce that for ,
which can be thought of as an extension of Matsumoto's celebrated theorem
describing of a field. These results provide the first step in a program
aimed at computing the sheaf for .Comment: 36 Pages, Final version, to appear Journal of Topolog
Can Momentum Correlations Proof Kinetic Equilibration in Heavy Ion Collisions at 160 AGeV?
We perform an event-by-event analysis of the transverse momentum distribution
of final state particles in central Pb(160AGeV)+Pb collisions within a
microscopic non-equilibrium transport model (UrQMD). Strong influence of
rescattering is found. The extracted momentum distributions show less
fluctuations in A+A collisions than in p+p reactions. This is in contrast to
simplified p+p extrapolations and random walk models.Comment: 9 pages, 3 eps figures, submitted to Phys. Lett.
Discrimination between two mechanisms of surface-scattering in a single-mode waveguide
Transport properties of a single-mode waveguide with rough boundary are
studied by discrimination between two mechanisms of surface scattering, the
amplitude and square-gradient ones. Although these mechanisms are generically
mixed, we show that for some profiles they can separately operate within
non-overlapping intervals of wave numbers of scattering waves. This effect may
be important in realistic situations due to inevitable long-range correlations
in scattering profiles.Comment: 5 pages, 3 figure
The Origin of Transverse Flow at the SPS
We study the transverse expansion in central Pb+Pb collisions at the CERN
SPS. Strong collective motion of hadrons can be created. This flow is mainly
due to meson baryon rescattering. It allows to study the angular distribution
of intermediate mass meson baryon interactions.Comment: submitted to Phys. Lett.
Strangeness Enhancement in Heavy Ion Collisions - Evidence for Quark-Gluon-Matter ?
The centrality dependence of (multi-)strange hadron abundances is studied for
Pb(158 AGeV)Pb reactions and compared to p(158 GeV)Pb collisions. The
microscopic transport model UrQMD is used for this analysis. The predicted
Lambda/pi-, Xi-/pi- and Omega-/pi- ratios are enhanced due to rescattering in
central Pb-Pb collisions as compared to peripheral Pb-Pb or p-Pb collisions. A
reduction of the constituent quark masses to the current quark masses m_s \sim
230 MeV, m_q \sim 10 MeV, as motivated by chiral symmetry restoration, enhances
the hyperon yields to the experimentally observed high values. Similar results
are obtained by an ad hoc overall increase of the color electric field strength
(effective string tension of kappa=3 GeV/fm). The enhancement depends strongly
on the kinematical cuts. The maximum enhancement is predicted around
midrapidity. For Lambda's, strangeness suppression is predicted at
projectile/target rapidity. For Omega's, the predicted enhancement can be as
large as one order of magnitude. Comparisons of Pb-Pb data to proton induced
asymmetric (p-A) collisions are hampered due to the predicted strong asymmetry
in the various rapidity distributions of the different (strange) particle
species. In p-Pb collisions, strangeness is locally (in rapidity) not
conserved. The present comparison to the data of the WA97 and NA49
collaborations clearly supports the suggestion that conventional (free)
hadronic scenarios are unable to describe the observed high (anti-)hyperon
yields in central collisions. The doubling of the strangeness to nonstrange
suppression factor, gamma_s \approx 0.65, might be interpreted as a signal of a
phase of nearly massless particles.Comment: published version, discussion on strange mesons and new table added,
extended discussion on strange baryon yields. Latex, 20 pages, including 5
eps-figure
Direct photons in Pb+Pb at CERN-SPS from microscopic transport theory
Direct photon production in central Pb+Pb collisions at CERN-SPS energy is
calculated within the relativistic microscopic transport model UrQMD, and
within distinctly different versions of relativistic hydrodynamics. We find
that in UrQMD the local momentum distributions of the secondaries are strongly
elongated along the beam axis initially. Therefore, the pre-equilibrium
contribution dominates the photon spectrum at transverse momenta above GeV. The hydrodynamics prediction of a strong correlation between the
temperature and radial expansion velocities on the one hand and the slope of
the transverse momentum distribution of direct photons on the other hand thus
is not recovered in UrQMD. The rapidity distribution of direct photons in UrQMD
reveals that the initial conditions for the longitudinal expansion of the
photon source (the meson ``fluid'') resemble rather boostinvariance than
Landau-like flow.Comment: 14 pages, RevTex, 5 Encapsulated-PostScript Figure
Local Thermal and Chemical Equilibration and the Equation of State in Relativistic Heavy Ion Collisions
Thermodynamical variables and their time evolution are studied for central
relativistic heavy ion collisions from 10.7 to 160 AGeV in the microscopic
Ultrarelativistic Quantum Molecular Dynamics model (UrQMD). The UrQMD model
exhibits drastic deviations from equilibrium during the early high density
phase of the collision. Local thermal and chemical equilibration of the
hadronic matter seems to be established only at later stages of the quasi-
isentropic expansion in the central reaction cell with volume 125 fm.
distributions at all collision energies for with a unique
Baryon energy spectra in this cell are approximately reproduced by Boltzmann
rapidly dropping temperature. At these times the equation of state has a simple
form: . At 160 AGeV the strong deviation from
chemical equilibrium is found for mesons, especially for pions, even at the
late stage of the reaction. The final enhancement of pions is supported by
experimental data.Comment: 17 Pages, LaTex, 8 eps figures. Talk given at SQM'98 conference,
20-24 July 1998, Padova, Italy, submitted to J. Phys.
Beat-wave generation of plasmons in semiconductor plasmas
It is shown that in semiconductor plasmas, it is possible to generate large
amplitude plasma waves by the beating of two laser beams with frequency
difference close to the plasma frequency. For narrow gap semiconductors (for
example n-type InSb), the system can simulate the physics underlying beat wave
generation in relativistic gaseous plasmas.Comment: 11 pages, LaTex, no figures, no macro
- …