92 research outputs found

    Stable isotopic insight into pelagic carbon cycling in Loch Lomond: a large, temperate latitude lake.

    Get PDF
    Lakes play an important role in biosphere carbon dynamics. Though proportionally they constitute a small surface feature on the planet, in many cases lakes are subject to significant subsidies of organic material from their catchments. This input of allochthonous organic material, in addition to autochthonous organic material, has shown that lakes, particularly in temperate and boreal zones, can be heterotrophic systems and as such are net producers of CO2. Thus, understanding the magnitude of fluxes of carbon through these limnetic systems is important if their contribution to ecosystem / global carbon dynamics is to be elucidated. In this research two separate field campaigns were undertaken with the goal of understanding if, and exactly how significant secondary (bacterial) production utilising allochthonous carbon is to overall pelagic production in Loch Lomond, Scotland. Stable isotopic composition of dissolved inorganic carbon (DIC), dissolved oxygen (DO), dissolved organic carbon (DOC) and total dissolved nitrogen (TDN), along with their respective concentrations, were measured in a temporal and spatial survey. Range in [DIC] and δ13CDIC was consistent with that predicted by the shifting balance between autotrophic and heterotrophic pathways. [DIC] peaked in the summer / autumn (0.27 ± 0.09 and 0.17 ± 0.05 mM, south and north basins respectively), reflecting a period when bacterial processing of allochthonous material is high, and thus so is CO2 production. This effect was more pronounced in the mesotrophic south basin of the lake, compared to the oligotrophic north. Surface waters in the south, middle and north basins were generally saturated in CO2 beyond atmospheric equilibrium and thus sources of CO2 to the atmosphere. δ13CDIC and δ18ODO exhibited seasonal and spatial variability, probably also a result of changing metabolic balance and inflow characteristics. Spring / summer peaks in δ13CDIC (-5.1‰ epilimnion maximum) are indicative of photosynthetic incorporation, and vice versa in the autumn / winter (-13‰ hypolimnion minimum) points towards respiratory dominance. δ18ODO is enriched during respiratory utilisation and peaks in the autumn / winter months. Depletion in δ13CDIC coupled to concurrent enrichment in δ18ODO observed with increasing depth (particularly during lake stratification) is assumed to again be a result of a shift in metabolic process dominance from autotrophic to heterotrophic (Myrbo and Shapley 2006). Spatial variability was consistent with the varying trophic states between basins, e.g., most enriched δ13CDIC was recorded in the more productive south basin compared to the middle or north. Dissolved organic carbon concentration also changed with position in the lake. Highest concentrations in the south basin were linked to a shallow gradient catchment, draining base rich soils and agricultural land, compared to the steep sloped, base-poor catchment in the north. The greater quantities of dissolved organic carbon in the south suggested that if bacterial processing of allochthonous material was significant it would likely be most prevalent in the south. During the spatial survey consistent and significant heterogeneity in DIC, DO and DOC was recorded. Although the same degree of variability may not be associated with other, more mophometrically / hydrologically simple lakes, this work has shown consideration of this possibility is advisable. The second field campaign used direct measurements of algal and bacterial productivity, using labelled stable isotope incorporation methods, to elucidate the balance between autotrophic and heterotrophic processes. Primary production (PP) followed a predictable seasonal pattern, peaking in the spring and remaining relatively high until autumn. During this period primary production generally exceeded bacterial production (BP) per litre. During the winter this pattern was reversed. Using integrated estimates of both PP and BP this work showed that BP exceeded PP in the pelagic zone for the majority of the year, and over much of the lake’s extent. Even in the epilimnion BP was regularly the more significant process through the water column, and thus it is concluded Loch Lomond is a heterotrophic system and a likely source of CO2 to the atmosphere. The PP: BP ratio ranged from 0.6 – 0.8 in the north basin, and 0.4 to 0.6 in the south. On average for the whole lake, bacterial production exceeded primary production by between 2,700 and 4,400 kg C day-1. In total it was estimated that PP processes approximately 970 tonnes of carbon per year and BP between 2,300 and 2,800 tonnes of carbon per year. The proportion of total pelagic production fuelled by bacterial utilisation of allochthonous carbon changed throughout the year. During peaks of PP in the spring and summer much of the bacterial carbon demand was met by autochthonous supply. During the autumn / winter allochthonous carbon utilisation dominated pelagic production and regularly contributed over 90% of total pelagic production. Combining estimated quantities of allochthonous carbon utilised in the north and south basins per m2 (the middle basin taken as an intermediate between the two) and combining it with GIS data on lake volume, the total quantity of terrestrially derived carbon processed in Loch Lomond was estimated at approximately 3,300 ± 2,100 kg Callo day-1. Both spatial and temporal surveys of natural abundance stable isotope ratios, along with concurrent measurements of algal and bacterial production, have provided substantial evidence for the importance of allochthonous carbon in Loch Lomond. Even minimum estimates imply a system dominated by bacterial production, fuelled by a proportionally high quantity of terrestrial material, thus producing excess CO2, and potentially fluxing CO2 to the atmosphere

    Anthropogenic-estuarine interactions cause disproportionate greenhouse gas production: a review of the evidence base

    Get PDF
    Biologically productive regions such as estuaries and coastal areas, even though they only cover a small percentage of the world's oceans, contribute significantly to methane and nitrous oxide emissions. This paper synthesises greenhouse gas data measured in UK estuary studies, highlighting that urban wastewater loading is significantly correlated with both methane (PÂ <Â 0.001) and nitrous oxide (PÂ <Â 0.005) concentrations. It demonstrates that specific estuary typologies render them more sensitive to anthropogenic influences on greenhouse gas production, particularly estuaries that experience low oxygen levels due to reduced mixing and stratification or high sediment oxygen demand. Significantly, we find that estuaries with high urban wastewater loading may be hidden sources of greenhouse gases globally. Synthesising available information, a conceptual model for greenhouse gas concentrations in estuaries with different morphologies and mixing regimes is presented. Applications of this model should help identification of estuaries susceptible to anthropogenic impacts and potential hotspots for greenhouse gas emissions

    Dissolved organic carbon export in a small, disturbed peat catchment: insights from long-term, high-resolution, sensor-based monitoring

    Get PDF
    Understanding dissolved organic carbon (DOC) export dynamics from carbon-rich environments is critical. Peatlands act as terrestrial carbon stores, and consequently supply substantial amounts of DOC to drainage. This DOC flux is temporally heterogeneous and subject to long- and short-term variability. Ultrahigh temporal resolution sampling (&lt; hourly) is still in-frequent in peatland catchments. We used a field-deployable —ultraviolet–visible light spectrometer (Spectro::lyser™) and monitored DOC flux from a temperate peatland over 31 months to examine seasonal and event dynamics. DOC concentration varied from 6.8 to 63.5 mg L−1, in the higher reported range for peatlands and showed clear seasonal (high-summer, low-winter) variability coinciding with elevated biological productivity in the peatland. Discharge was an unreliable predictor of instantaneous DOC concentration overall, with antecedent water temperatures proving the most reliable predictor overall. Discharge drove total DOC export in the catchment, where the top 10% of flow events, accounted for 41.3% of all DOC exported—increasing to 84.6% in the top 50% of flow events. Total estimated catchment DOC flux was sensitive to measurement frequency: increasing from every 30 min to daily altered export estimates by &lt; 1%, increasing to &gt; 10% at 1-week intervals. The variation in estimated flux increased approximately linearly with reduced sampling frequency, reaching &gt; 40% at monthly intervals. High-resolution data reveal the large amount of within-site complexity of DOC export dynamics in a temperate peatland and provide evidence on the subsequently recommended sampling frequency for the future elucidation of detailed DOC budgets in these environments

    Urban landscapes and legacy industry provide hotspots for riverine greenhouse gases: a source-to-sea study of the River Clyde

    Get PDF
    There is growing global concern that greenhouse gas (GHG) emissions from water bodies are increasing because of interactions between nutrient levels and climate warming. This paper investigates key land-cover, seasonal and hydrological controls of GHGs by comparison of the semi-natural, agricultural and urban environments in a detailed source-to-sea study of the River Clyde, Scotland. Riverine GHG concentrations were consistently oversaturated with respect to the atmosphere. High riverine concentrations of methane (CH4) were primarily associated with point source inflows from urban wastewater treatment, abandoned coal mines and lakes, with CH4-C concentrations between 0.1 - 44 µg l−1. Concentrations of carbon dioxide (CO2) and nitrous oxide (N2O) were mainly driven by nitrogen concentrations, dominated by diffuse agricultural inputs in the upper catchment and supplemented by point source inputs from urban wastewater in the lower urban catchment, with CO2-C concentrations between 0.1 - 2.6 mg l−1 and N2O-N concentrations between 0.3 - 3.4 µg l−1. A significant and disproportionate increase in all GHGs occurred in the lower urban riverine environment in the summer, compared to the semi-natural environment, where GHG concentrations were higher in winter. This increase and change in GHG seasonal patterns points to anthropogenic impacts on microbial communities. The loss of total dissolved carbon, to the estuary is approximately 48.4 ± 3.6 Gg C yr−1, with the annual inorganic carbon export approximately double that of organic carbon and four times that of CO2, with CH4 accounting for 0.03%, with the anthropogenic impact of disused coal mines accelerating DIC loss. The annual loss of total dissolved nitrogen to the estuary is approximately 4.03 ± 0.38 Gg N yr−1 of which N2O represents 0.06%. This study improves our understanding of riverine GHG generation and dynamics which can contribute to our knowledge of their release to the atmosphere. It identifies where action could support reductions in aquatic GHG generation and emission

    Sources and controls of greenhouse gases and heavy metals in mine water: a continuing climate legacy

    Get PDF
    Water pollution arising from abandoned coal mines, is second only to sewage as a source of freshwater pollution and in coalfield catchments mine water can be the dominant pollutant, with oxidised iron smothering the bed of receiving rivers. This study measured greenhouse gases in mine water outflows from sixteen sites across the Midland Valley in Scotland. Radiogenic and stable carbon isotopes measurements (Δ 14C and δ13C) were used to determine the sources of both methane (CH4) and carbon dioxide (CO2) produced within the flooded mine environment. Concentrations of CH4-C ranged from 20 to 215 μg l−1 and CO2-C from 30 to 120 mg l−1, with CO2 accounting for 97 % of the mine water global warming potential. Methane origins included 51 % modern biogenic, 41 % thermogenic and 8 % from hydrogenotrophic methanogenesis of coal. The most significant inverse impact on biogenic CH4 concentrations was sulphate, most likely due to sulphate reducing bacteria outcompeting methanogens. Carbon dioxide origins included 64 % from the dissolution of limestone, 21 % from terrestrial organic carbon and 15 % from coal. The limestone derived CO2 was positively correlated with high sulphate concentrations, which resulted in sulphuric acid and caused the dissolution of carbonate from limestone. The mine waters experienced significant carbonate buffering becoming only slightly acidic (pH 6–7), but with significant loss of inorganic carbon. The mine waters had low dissolved oxygen (6–25 %) and high dissolved iron (2 to 65 mg l−1) and manganese (0.5 to 5 mg l−1) concentrations. Dissolved greenhouse gases from abandoned mines were estimated as 0.27 +0.31 -0.18% of Scotland's global warming potential. This novel work has contributed information about the sources and controls of greenhouse gas fluxes in mine waters and identified the need to quantify and report this emissions term

    Vertical variations of soil carbon under different land uses in a karst critical zone observatory (CZO), SW China

    Get PDF
    Soil is a key carbon reservoir balancing global carbon budget and regulating climate change. Barren soils in karst zones have weak capacity for soil and water conservation and are readily erodible, making the carbon biogeochemical processes within karst soils potentially rapid and complex. To explore the vertical variation of soil carbon under karst conditions and its response to land-use change, this study investigated concentrations and isotopic compositions of both soil organic and inorganic carbon (SOC and SIC) in different depths of four land-use types in a typical karst region, SW China. Results show that as soil depth increases, SOC concentrations decrease, and its δ13C ratios (from −27.3‰ to −19.4‰) increase in 0–20 cm depth but decrease at depths below 20 cm. The fresh SOC is mostly sequestered and cycled within the topsoil and subject to different controls than that of the subsoil. The turnover rate of SOC in karst soils does not directly co-vary with isotopic fractionation among different land uses. Long-term cultivation causes SOC loss from karst soils, which can be alleviated or even partially restored after farming cessation. By contrast, SIC represents &lt; 10% of soil total carbon. The vertical heterogeneity of SIC variation and the direct influence of biological factors on SIC are both weaker relative to SOC. The low δ13C ratios of SIC (from −20.4‰ to −3.0‰) indicate there is intense dissolution and reprecipitation of pedogenic carbonate within karst soil, especially in the upper cultivated layers. These results highlight that both SOC and SIC are labile and susceptible to land-use change in karst zones, which need to be considered in estimating karst carbon sink and its role in balancing global carbon budget on variable temporal scales

    Light-driven dynamics between calcification and production in functionally diverse coral reef calcifiers

    Get PDF
    Coral reef metabolism underpins ecosystem function and is defined by the processes of photosynthesis, respiration, calcification, and calcium carbonate dissolution. However, the relationships between these physiological processes at the organismal level and their interactions with light remain unclear. We examined metabolic rates across a range of photosynthesising calcifiers in the Caribbean: the scleractinian corals Acropora cervicornis, Orbicella faveolata, Porites astreoides, and Siderastrea siderea, and crustose coralline algae (CCA) under varying natural light conditions. Net photosynthesis and calcification showed a parabolic response to light across all species, with differences among massive corals, branching corals, and CCA that reflect their relative functional roles on the reef. At night, all organisms were net respiring, and most were net calcifying, although some incubations demonstrated instances of net calcium carbonate (CaCO3) dissolution. Peak metabolic rates at light-saturation (maximum photosynthesis and calcification) and average dark rates (respiration and dark calcification) were positively correlated across species. Interspecies relationships among photosynthesis, respiration, and calcification indicate that calcification rates are linked to energy production at the organismal level in calcifying reef organisms. The species-specific ratios of net calcification to photosynthesis varied with light over a diurnal cycle. The dynamic nature of calcification/photosynthesis ratios over a diurnal cycle questions the use of this metric as an indicator for reef function and health at the ecosystem scale unless temporal variability is accounted for, and a new metric is proposed. The complex light-driven dynamics of metabolic processes in coral reef organisms indicate that a more comprehensive understanding of reef metabolism is needed for predicting the future impacts of global change

    Radiocarbon data reveal contrasting sources for carbon fractions in thermokarst lakes and rivers of Eastern Canada (Nunavik, Quebec)

    Get PDF
    Greenhouse gas (GHG) emissions from permafrost organic carbon decomposition in lakes and rivers can accelerate global warming. We used radiocarbon (14C) measurements to determine the predominant sources of dissolved organic carbon (DOC), particulate organic carbon (POC), dissolved inorganic carbon (DIC), and methane (CH4) in five thermokarst lakes and three rivers in an area of widespread permafrost degradation in Northern Quebec to assess contributions from thawing permafrost and other old carbon (fixed before CE 1950) reservoirs. We compared emission pathways (dissolved gas and ebullition), seasons (summer and winter), and surface soil type (mineral and peat soils). Modern carbon (fixed after CE 1950) was the dominant source of DOC, DIC, and CH4 of non‐peatland aquatic systems, while POC and sediment carbon were predominantly fixed in the last millennia. In the peatland systems, modern and permafrost carbon were important sources of DOC, lake DIC, lake ebullition CO2, and lake dissolved CH4. In contrast, POC, lake ebullition CH4, and river DIC were dominated by millennial‐old carbon. In winter, the 14C age of DOC, DIC, and POC in the peatland lakes increased, but the 14C age of dissolved CH4 did not change. Our results point to a clearly older overall carbon source for ebullition CH4 relative to dissolved CH4 in the peatland lakes, but not the non‐peatland lakes. The younger ages of diffusive CH4 and DIC relative to DOC and POC in all lakes suggest that recent primary productivity strongly influences the large total lake CH4 emissions in this area, as diffusion fluxes greatly exceed ebullition fluxes

    Clinically actionable mutation profiles in patients with cancer identified by whole-genome sequencing

    Get PDF
    Next-generation sequencing (NGS) efforts have established catalogs of mutations relevant to cancer development. However, the clinical utility of this information remains largely unexplored. Here, we present the results of the first eight patients recruited into a clinical whole-genome sequencing (WGS) program in the United Kingdom. We performed PCR-free WGS of fresh frozen tumors and germline DNA at 75× and 30×, respectively, using the HiSeq2500 HTv4. Subtracted tumor VCFs and paired germlines were subjected to comprehensive analysis of coding and noncoding regions, integration of germline with somatically acquired variants, and global mutation signatures and pathway analyses. Results were classified into tiers and presented to a multidisciplinary tumor board. WGS results helped to clarify an uncertain histopathological diagnosis in one case, led to informed or supported prognosis in two cases, leading to de-escalation of therapy in one, and indicated potential treatments in all eight. Overall 26 different tier 1 potentially clinically actionable findings were identified using WGS compared with six SNVs/indels using routine targeted NGS. These initial results demonstrate the potential of WGS to inform future diagnosis, prognosis, and treatment choice in cancer and justify the systematic evaluation of the clinical utility of WGS in larger cohorts of patients with cancer

    Factors affecting innovation and imitation of ICT in the agrifood sector

    Get PDF
    Diffusion of innovations has gained a lot of attention and concerns different scientific fields. Many studies, which examine the determining factors of technological innovations in the agricultural and agrifood sector, have been conducted using the widely used Technology Accepted Model, for a random sample of farmers or firms engaged in agricultural sector. In the present study, a holistic examination of the determining factors that affect the propensity of firms to innovate or imitate, is conducted. The diffusion of ICT tools of firms which are engaged in the NACE 02/03 as well as in the NACE 10/11 classifications for 49 heterogeneous national markets is examined, using the Bass model. The innovation parameter is positively associated with rural income, female employment, export activity and education of farmers, while the imitation parameter is increased in countries whose societies are characterized by uncertainty avoidance
    • …
    corecore