92 research outputs found
Angle-resolved photoemission spectra in the cuprates from the d-density wave theory
Angle-resolved photoemission spectra present two challenges for the d-density
wave (DDW) theory of the pseudogap state of the cuprates: (1) hole pockets near
are not observed, in apparent contradiction with the assumption
of translational symmetry breaking, and (2) there are no well-defined
quasiparticles at the {\it antinodal} points, in contradiction with the
predictions of mean-field theory of this broken symmetry state. Here, we show
how these puzzles can be resolved.Comment: 4 pages, 3 eps figures, RevTex
Approximate tight-binding sum rule for the superconductivity related change of c-axis kinetic energy in multilayer cuprate superconductors
We present an extension of the c-axis tight-binding sum rule discussed by
Chakravarty, Kee, and Abrahams [Phys. Rev. Lett. 82, 2366 (1999)] that applies
to multilayer high-Tc cuprate superconductors (HTCS) and use it to
estimate--from available infrared data--the change below Tc of the c-axis
kinetic energy, Hc, in YBa2Cu3O(7-delta) (delta=0.45,0.25,0.07), Bi2Sr2CaCu2O8,
and Bi2Sr2Ca2Cu3O10. In all these compounds Hc decreases below Tc and except
for Bi2Sr2CaCu2O8 the change of Hc is of the same order of magnitude as the
condensation energy. This observation supports the hypothesis that in
multilayer HTCS superconductivity is considerably amplified by the interlayer
tunnelling mechanism.Comment: 6 pages, 2 figure
Sum rules and energy scales in the high-temperature superconductor YBa2Cu3O6+x
The Ferrell-Glover-Tinkham (FGT) sum rule has been applied to the temperature
dependence of the in-plane optical conductivity of optimally-doped
YBa_2Cu_3O_{6.95} and underdoped YBa_2Cu_3O_{6.60}. Within the accuracy of the
experiment, the sum rule is obeyed in both materials. However, the energy scale
\omega_c required to recover the full strength of the superfluid \rho_s in the
two materials is dramatically different; \omega_c \simeq 800 cm^{-1} in the
optimally doped system (close to twice the maximum of the superconducting gap,
2\Delta_0), but \omega_c \gtrsim 5000 cm^{-1} in the underdoped system. In both
materials, the normal-state scattering rate close to the critical temperature
is small, \Gamma < 2\Delta_0, so that the materials are not in the dirty limit
and the relevant energy scale for \rho_s in a BCS material should be twice the
energy gap. The FGT sum rule in the optimally-doped material suggests that the
majority of the spectral weight of the condensate comes from energies below
2\Delta_0, which is consistent with a BCS material in which the condensate
originates from a Fermi liquid normal state. In the underdoped material the
larger energy scale may be a result of the non-Fermi liquid nature of the
normal state. The dramatically different energy scales suggest that the nature
of the normal state creates specific conditions for observing the different
aspects of what is presumably a central mechanism for superconductivity in
these materials.Comment: RevTeX 4 file, 9 pages with 7 embedded eps figure
Recommended from our members
Ultrafast nonlocal collective dynamics of Kane plasmon-polaritons in a narrow-gap semiconductor
The observation of ultrarelativistic fermions in condensed-matter systems has uncovered a cornucopia of novel phenomenology as well as a potential for effective ultrafast light engineering of new states of matter. While the nonequilibrium properties of two- and three-dimensional (2D and 3D) hexagonal crystals have been studied extensively, our understanding of the photoinduced dynamics in 3D single-valley ultrarelativistic materials is, unexpectedly, lacking. Here, we use ultrafast scanning near-field optical spectroscopy to access and control nonequilibrium large-momentum plasmon-polaritons in thin films of a prototypical narrow-bandgap semiconductor Hg0.81Cd0.19Te. We demonstrate that these collective excitations exhibit distinctly nonclassical scaling with electron density characteristic of the ultrarelativistic Kane regime and experience ultrafast initial relaxation followed by a long-lived highly coherent state. Our observation and ultrafast control of Kane plasmon-polaritons in a semiconducting material using light sources in the standard telecommunications fiber-optics window open a new avenue toward high-bandwidth coherent information processing in next-generation plasmonic circuits
Condensation Energy and High Tc Superconductivity
From an analysis of the specific heat of one of the cuprate superconductors
it is shown, that even if a large part of the experimental specific heat
associated with the superconducting phase transition is due to fluctuations,
this part must be counted when one tries to extract the condensation energy
from the data. Previous work by Chakravarty, Kee and Abrahams, where the
fluctuation part was subtracted, has resulted in an incorrect estimation of the
condensation energy.Comment: 4 pages, 5 encapsulated Postscript figures, uses ReVTeX.st
Electron Dynamics in NdCeCuO: Evidence for the Pseudogap State and Unconventional c-axis Response
Infrared reflectance measurements were made with light polarized along the a-
and c-axis of both superconducting and antiferromagnetic phases of electron
doped NdCeCuO. The results are compared to
characteristic features of the electromagnetic response in hole doped cuprates.
Within the CuO planes the frequency dependent scattering rate,
1/, is depressed below 650 cm; this behavior is a
hallmark of the pseudogap state. While in several hole doped compounds the
energy scales associated with the pseudogap and superconducting states are
quite close, we are able to show that in NdCeCuO
the two scales differ by more than one order of magnitude. Another feature of
the in-plane charge response is a peak in the real part of the conductivity,
, at 50-110 cm which is in sharp contrast with the
Drude-like response where is centered at . This
latter effect is similar to what is found in disordered hole doped cuprates and
is discussed in the context of carrier localization. Examination of the c-axis
conductivity gives evidence for an anomalously broad frequency range from which
the interlayer superfluid is accumulated. Compelling evidence for the pseudogap
state as well as other characteristics of the charge dynamics in
NdCeCuO signal global similarities of the cuprate
phase diagram with respect to electron and hole doping.Comment: Submitted to PR
Searching for the Slater Transition in the Pyrochlore CdOsO with Infrared Spectroscopy
Infrared reflectance measurements were made on the single crystal pyrochlore
CdOsO in order to examine the transformations of the
electronic structure and crystal lattice across the boundary of the metal
insulator transition at . All predicted IR active phonons are
observed in the conductivity over all temperatures and the oscillator strength
is found to be temperature independent. These results indicate that charge
ordering plays only a minor role in the MIT and that the transition is strictly
electronic in nature. The conductivity shows the clear opening of a gap with
. The gap opens continuously, with a temperature
dependence similar to that of BCS superconductors, and the gap edge having a
distinct dependence. All of these
observables support the suggestion of a Slater transition in CdOsO.Comment: 4 pages, 4 figure
Triplanar Model for the Gap and Penetration Depth in YBCO
YBaCuO_7 is a trilayer material with a unit cell consisting of a CuO_2
bilayer with a CuO plane of chains in between. Starting with a model of
isolated planes coupled through a transverse matrix element, we consider the
possibility of intra as well as interplane pairing within a nearly
antiferromagnetic Fermi liquid model. Solutions of a set of three coupled BCS
equations for the gap exhibit orthorhombic symmetry with s- as well as d-wave
contributions. The temperature dependence and a-b in plane anisotropy of the
resulting penetration depth is discussed and compared with experiment.Comment: To appear in Physical Review B1 01Mar97; 12 pages with 10 figures;
RevTeX+eps
Conductivity sum rule, implication for in-plane dynamics and c-axis response
Recently observed -axis optical sum rule violations indicate non-Fermi
liquid in-plane behavior. For coherent -axis coupling, the observed flat,
nearly frequency independent -axis conductivity implies
a large in-plane scattering rate around and therefore any
pseudogap that might form at low frequency in the normal state will be smeared.
On the other hand incoherent -axis coupling places no restriction on the
value of and gives a more consistent picture of the observed sum rule
violation which, we find in some cases, can be less than half.Comment: 3 figures. To appear in PR
Correlation gap in the heavy-fermion antiferromagnet UPd_2Al_3
The optical properties of the heavy-fermion compound UPdAl have been
measured in the frequency range from 0.04 meV to 5 meV (0.3 to 40 cm) at
temperatures K. Below the coherence temperature K, the hybridization gap opens around 10 meV. As the temperature decreases
further ( K), a well pronounced pseudogap of approximately 0.2 meV
develops in the optical response; we relate this to the antiferromagnetic
ordering which occurs below K. The frequency dependent mass and
scattering rate give evidence that the enhancement of the effective mass mainly
occurs below the energy which is associated to the magnetic correlations
between the itinerant and localized 5f electrons. In addition to this
correlation gap, we observe a narrow zero-frequency conductivity peak which at
2 K is less than 0.1 meV wide, and which contains only a fraction of the
delocalized carriers. The analysis of the spectral weight infers a loss of
kinetic energy associated with the superconducting transition.Comment: RevTex, 15 pages, 7 figure
- …