3,651 research outputs found
Development tests for the 2.5 megawatt Mod-2 wind turbine generator
The 2.5 megawatt MOD-2 wind turbine generator test program is discussed. The development of the 2.5 megawatt MOD-2 wind turbine generator included an extensive program of testing which encompassed verification of analytical procedures, component development, and integrated system verification. The test program was to assure achievement of the thirty year design operational life of the wind turbine system as well as to minimize costly design modifications which would otherwise have been required during on site system testing. Computer codes were modified, fatigue life of structure and dynamic components were verified, mechanical and electrical component and subsystems were functionally checked and modified where necessary to meet system specifications, and measured dynamic responses of coupled systems confirmed analytical predictions
Coherent photodissociation reactions: Observation by a novel picosecond polarization technique
In this communication, we wish to report on a novel picosecond polarization method for measuring the degree of rotational coherence that is preserved in photodissociation reactions. The systems studied here are jet-cooled van der Waals molecules; stilbene [4-6] bound [5] to He or Ne with a 1:1 composition.[7
Recommended from our members
Development of the human prepuce and its innervation.
Development of the human prepuce was studied over the course of 9-17 weeks of gestation in 30 specimens. Scanning electron microscopy revealed subtle surface features that were associated with preputial development, namely the appearance of epidermal aggregates that appeared to be associated with formation of the preputial fold. Transverse and sagittal sections revealed that the epidermis of the glans is considerably thicker than that of the penile shaft. We described a novel morphogenetic mechanism of formation of the preputial lamina, namely the splitting of the thick epidermis of the glans into the preputial lamina and the epidermis via the intrusion of mesenchyme containing red blood cells and CD31-positive blood vessels. This process begins at 10-11 weeks of gestation in the proximal aspect of the glans and extends distally. The process is likely to be androgen-dependent and mediated via androgen receptors strategically localized to the morphogenetic process, but signaling through estrogen receptor may play a role. Estrogen receptor alpha (ESR1) has a very limited expression in the developing human glans and prepuce, while estrogen receptor beta (ESR2) is expressed more broadly in the developing preputial lamina, epidermis and urethra. Examination of the ontogeny of innervation of the glans penis and prepuce reveals the presence of the dorsal nerve of the penis as early as 9 weeks of gestation. Nerve fibers enter the glans penis proximally and extend distally over several weeks to eventually reach the distal aspect of the glans and prepuce by 14-16 weeks of gestation
Caging phenomena in reactions: Femtosecond observation of coherent, collisional confinement
We report striking observations of coherent caging of iodine, above the B state dissociation threshold, by single collisions with rare gas atoms at room-temperature. Despite the random nature of the solute–solvent interaction, the caged population retains coherence of the initially prepared unbound wave packet. We discuss some new concepts regarding dynamical coherent caging and the one-atom cage effect
Properties of 1D two-barrier quantum pump with harmonically oscillating barriers
We study a one-dimensional quantum pump composed of two oscillating
delta-functional barriers. The linear and non-linear regimes are considered.
The harmonic signal applied to any or both barriers causes the stationary
current. The direction and value of the current depend on the frequency,
distance between barriers, value of stationary and oscillating parts of barrier
potential and the phase shift between alternating voltages.Comment: 7 pages, 8 figure
Recommended from our members
Tailor-made composite functions as tools in model choice: the case of sigmoidal vs bi-linear growth profiles
BACKGROUND: Roots are the classical model system to study the organization and dynamics of organ growth zones. Profiles of the velocity of root elements relative to the apex have generally been considered to be sigmoidal. However, recent high-resolution measurements have yielded bi-linear profiles, suggesting that sigmoidal profiles may be artifacts caused by insufficient spatio-temporal resolution. The decision whether an empirical velocity profile follows a sigmoidal or bi-linear distribution has consequences for the interpretation of the underlying biological processes. However, distinguishing between sigmoidal and bi-linear curves is notoriously problematic. A mathematical function that can describe both types of curve equally well would allow them to be distinguished by automated curve-fitting. RESULTS: On the basis of the mathematical requirements defined, we created a composite function and tested it by fitting it to sigmoidal and bi-linear models with different noise levels (Monte-Carlo datasets) and to three experimental datasets from roots of Gypsophila elegans, Aurinia saxatilis, and Arabidopsis thaliana. Fits of the function proved robust with respect to noise and yielded statistically sound results if care was taken to identify reasonable initial coefficient values to start the automated fitting procedure. Descriptions of experimental datasets were significantly better than those provided by the Richards function, the most flexible of the classical growth equations, even in cases in which the data followed a smooth sigmoidal distribution. CONCLUSION: Fits of the composite function introduced here provide an independent criterion for distinguishing sigmoidal and bi-linear growth profiles, but without forcing a dichotomous decision, as intermediate solutions are possible. Our function thus facilitates an unbiased, multiple-working hypothesis approach. While our discussion focusses on kinematic growth analysis, this and similar tailor-made functions will be useful tools wherever models of steadily or abruptly changing dependencies between empirical parameters are to be compared
Recommended from our members
Androgen-independent events in penile development in humans and animals.
The common view on penile development is that it is androgen-dependent, based first and foremost on the fact that the genital tubercle forms a penis in males and a clitoris in females. However, critical examination of the complex processes involved in human penile development reveals that many individual steps in development of the genital tubercle are common to both males and females, and thus can be interpreted as androgen-independent. For certain developmental events this conclusion is bolstered by observations in androgen-insensitive patients and androgen receptor mutant mice. Events in genital tubercle development that are common to human males and females include: formation of (a) the genital tubercle, (b) the urethral plate, (c) the urethral groove, (d) the glans, (e) the prepuce and (f) the corporal body. For humans 6 of 13 individual developmental steps in penile development were interpreted as androgen-independent. For mice 5 of 11 individual developmental steps were found to be androgen-independent, which were verified through analysis of androgen-insensitive mutants. Observations from development of external genitalia of other species (moles and spotted hyena) provide further examples of androgen-independent events in penile development. These observations support the counter-intuitive idea that penile development involves both androgen-independent and androgen-dependent processes
Recommended from our members
Reproductive tract biology: Of mice and men.
The study of male and female reproductive tract development requires expertise in two separate disciplines, developmental biology and endocrinology. For ease of experimentation and economy, the mouse has been used extensively as a model for human development and pathogenesis, and for the most part similarities in developmental processes and hormone action provide ample justification for the relevance of mouse models for human reproductive tract development. Indeed, there are many examples describing the phenotype of human genetic disorders that have a reasonably comparable phenotype in mice, attesting to the congruence between mouse and human development. However, anatomic, developmental and endocrinologic differences exist between mice and humans that (1) must be appreciated and (2) considered with caution when extrapolating information between all animal models and humans. It is critical that the investigator be aware of both the similarities and differences in organogenesis and hormone action within male and female reproductive tracts so as to focus on those features of mouse models with clear relevance to human development/pathology. This review, written by a team with extensive expertise in the anatomy, developmental biology and endocrinology of both mouse and human urogenital tracts, focusses upon the significant human/mouse differences, and when appropriate voices a cautionary note regarding extrapolation of mouse models for understanding development of human male and female reproductive tracts
- …