175 research outputs found

    Scaling Laws in the Ductile Fracture of Metallic Crystals

    Get PDF
    We explore whether the continuum scaling behavior of the fracture energy of metals extends down to the atomistic level. We use an embedded atom method (EAM) model of Ni, thus bypassing the need to model strain-gradient plasticity at the continuum level. The calculations are performed with a number of different 3D periodic size cells using standard molecular dynamics (MD) techniques. A void nucleus of a single vacancy is placed in each cell and the cell is then expanded through repeated NVT MD increments. For each displacement, we then determine which cell size has the lowest energy. The optimal cell size and energy bear a power-law relation to the opening displacement that is consistent with continuum estimates based on strain-gradient plasticity (Fokoua et al., 2014, “Optimal Scaling in Solids Undergoing Ductile Fracture by Void Sheet Formation,” Arch. Ration. Mech. Anal. (in press); Fokoua et al., 2014, “Optimal Scaling Laws for Ductile Fracture Derived From Strain-Gradient Microplasticity,” J. Mech. Phys. Solids, 62, pp. 295–311). The persistence of power-law scaling of the fracture energy down to the atomistic level is remarkable

    Non-clasical Nucleation in Supercooled Nickel

    Full text link
    The dynamics of homogeneous nucleation and growth of crystalline nickel from the super-cooled melt is examined during rapid quenching using molecular dynamics and a modified embedded atom method potential. The character of the critical nuclei of the crystallization transition is examined using common neighbor analysis and visualization. At nucleation the saddle point droplet consists of randomly stacked planar structures with an in plane triangular order. These results are consistent with previous theoretical results that predict that the nucleation process in some metals is non-classical due to the presence of long-range forces and a spinodal.Comment: 4 pages, 5 figure

    Structural, elastic and thermal properties of cementite (Fe3_3C) calculated using Modified Embedded Atom Method

    Full text link
    Structural, elastic and thermal properties of cementite (Fe3_3C) were studied using a Modified Embedded Atom Method (MEAM) potential for iron-carbon (Fe-C) alloys. Previously developed Fe and C single element potentials were used to develop an Fe-C alloy MEAM potential, using a statistically-based optimization scheme to reproduce structural and elastic properties of cementite, the interstitial energies of C in bcc Fe as well as heat of formation of Fe-C alloys in L12_{12} and B1_1 structures. The stability of cementite was investigated by molecular dynamics simulations at high temperatures. The nine single crystal elastic constants for cementite were obtained by computing total energies for strained cells. Polycrystalline elastic moduli for cementite were calculated from the single crystal elastic constants of cementite. The formation energies of (001), (010), and (100) surfaces of cementite were also calculated. The melting temperature and the variation of specific heat and volume with respect to temperature were investigated by performing a two-phase (solid/liquid) molecular dynamics simulation of cementite. The predictions of the potential are in good agreement with first-principles calculations and experiments.Comment: 12 pages, 9 figure

    The influence of defects on magnetic properties of fcc-Pu

    Full text link
    The influence of vacancies and interstitial atoms on magnetism in Pu has been considered in frames of the Density Functional Theory (DFT). The relaxation of crystal structure arising due to different types of defects was calculated using the molecular dynamic method with modified embedded atom model (MEAM). The LDA+U+SO (Local Density Approximation with explicit inclusion of Coulomb and spin-orbital interactions) method in matrix invariant form was applied to describe correlation effects in Pu with these types of defects. The calculations show that both vacancies and interstitials give rise to local moments in ff-shell of Pu in good agreement with experimental data for annealed Pu. Magnetism appears due to destroying of delicate balance between spin-orbital and exchange interactions.Comment: 13 pages, 4 figure

    Modified embedded-atom method interatomic potentials for the Mg-Al alloy system

    Full text link
    We developed new modified embedded-atom method (MEAM) interatomic potentials for the Mg-Al alloy system using a first-principles method based on density functional theory (DFT). The materials parameters, such as the cohesive energy, equilibrium atomic volume, and bulk modulus, were used to determine the MEAM parameters. Face-centered cubic, hexagonal close packed, and cubic rock salt structures were used as the reference structures for Al, Mg, and MgAl, respectively. The applicability of the new MEAM potentials to atomistic simulations for investigating Mg-Al alloys was demonstrated by performing simulations on Mg and Al atoms in a variety of geometries. The new MEAM potentials were used to calculate the adsorption energies of Al and Mg atoms on Al (111) and Mg (0001) surfaces. The formation energies and geometries of various point defects, such as vacancies, interstitial defects and substitutional defects, were also calculated. We found that the new MEAM potentials give a better overall agreement with DFT calculations and experiments when compared against the previously published MEAM potentials.Comment: Fixed a referenc
    corecore