1,559 research outputs found

    Imprints of the Quantum World in Classical Mechanics

    Full text link
    The imprints left by quantum mechanics in classical (Hamiltonian) mechanics are much more numerous than is usually believed. We show Using no physical hypotheses) that the Schroedinger equation for a nonrelativistic system of spinless particles is a classical equation which is equivalent to Hamilton's equations.Comment: Paper submitted to Foundations of Physic

    Explorations in anatomy: the remains from Royal London Hospital

    Get PDF
    This paper considers the faunal remains from recent excavations at the Royal London Hospital. The remains date to the beginning of the 19th century and offer an insight into the life of the hospital's patients and practices of the attached medical school. Many of the animal remains consist of partially dissected skeletons, including the unique finds of Hermann's tortoise (Testudo hermanni) and Cercopithecus monkey. The hospital diet and developments in comparative anatomy are discussed by integrating the results with documentary research. They show that zooarchaeological study of later post-medieval material can significantly enhance our understanding of the exploitation of animals in this perio

    Ablation of Whirlin Long Isoform Disrupts the USH2 Protein Complex and Causes Vision and Hearing Loss

    Get PDF
    Mutations in whirlin cause either Usher syndrome type II (USH2), a deafness-blindness disorder, or nonsyndromic deafness. The molecular basis for the variable disease expression is unknown. We show here that only the whirlin long isoform, distinct from a short isoform by virtue of having two N-terminal PDZ domains, is expressed in the retina. Both long and short isoforms are expressed in the inner ear. The N-terminal PDZ domains of the long whirlin isoform mediates the formation of a multi-protein complex that includes usherin and VLGR1, both of which are also implicated in USH2. We localized this USH2 protein complex to the periciliary membrane complex (PMC) in mouse photoreceptors that appears analogous to the frog periciliary ridge complex. The latter is proposed to play a role in photoreceptor protein trafficking through the connecting cilium. Mice carrying a targeted disruption near the N-terminus of whirlin manifest retinal and inner ear defects, reproducing the clinical features of human USH2 disease. This is in contrast to mice with mutations affecting the C-terminal portion of whirlin in which the phenotype is restricted to the inner ear. In mice lacking any one of the USH2 proteins, the normal localization of all USH2 proteins is disrupted, and there is evidence of protein destabilization. Taken together, our findings provide new insights into the pathogenic mechanism of Usher syndrome. First, the three USH2 proteins exist as an obligatory functional complex in vivo, and loss of one USH2 protein is functionally close to loss of all three. Second, defects in the three USH2 proteins share a common pathogenic process, i.e., disruption of the PMC. Third, whirlin mutations that ablate the N-terminal PDZ domains lead to Usher syndrome, but non-syndromic hearing loss will result if they are spared

    Modeling tumor cell migration: from microscopic to macroscopic

    Get PDF
    It has been shown experimentally that contact interactions may influence the migration of cancer cells. Previous works have modelized this thanks to stochastic, discrete models (cellular automata) at the cell level. However, for the study of the growth of real-size tumors with several millions of cells, it is best to use a macroscopic model having the form of a partial differential equation (PDE) for the density of cells. The difficulty is to predict the effect, at the macroscopic scale, of contact interactions that take place at the microscopic scale. To address this we use a multiscale approach: starting from a very simple, yet experimentally validated, microscopic model of migration with contact interactions, we derive a macroscopic model. We show that a diffusion equation arises, as is often postulated in the field of glioma modeling, but it is nonlinear because of the interactions. We give the explicit dependence of diffusivity on the cell density and on a parameter governing cell-cell interactions. We discuss in details the conditions of validity of the approximations used in the derivation and we compare analytic results from our PDE to numerical simulations and to some in vitro experiments. We notice that the family of microscopic models we started from includes as special cases some kinetically constrained models that were introduced for the study of the physics of glasses, supercooled liquids and jamming systems.Comment: Final published version; 14 pages, 7 figure

    Complete intracranial response to talimogene laherparepvec (T-Vec), pembrolizumab and whole brain radiotherapy in a patient with melanoma brain metastases refractory to dual checkpoint-inhibition

    Get PDF
    Background Immunotherapy, in particular checkpoint blockade, has changed the clinical landscape of metastatic melanoma. Nonetheless, the majority of patients will either be primary refractory or progress over follow up. Management of patients progressing on first-line immunotherapy remains challenging. Expanded treatment options with combination immunotherapy has demonstrated efficacy in patients previously unresponsive to single agent or alternative combination therapy. Case presentation We describe the case of a patient with diffusely metastatic melanoma, including brain metastases, who, despite being treated with stereotactic radiosurgery and dual CTLA-4/PD-1 blockade (ipilimumab/nivolumab), developed systemic disease progression and innumerable brain metastases. This patient achieved a complete CNS response and partial systemic response with standard whole brain radiation therapy (WBRT) combined with Talimogene laherparepvec (T-Vec) and pembrolizumab. Conclusion Patients who do not respond to one immunotherapy combination may respond during treatment with an alternate combination, even in the presence of multiple brain metastases. Biomarkers are needed to assist clinicians in evidence based clinical decision making after progression on first line immunotherapy to determine whether response can be achieved with second line immunotherapy

    Supervillin Binding to Myosin II and Synergism with Anillin Are Required for Cytokinesis

    Get PDF
    Cytokinesis, the process in which cytoplasm is apportioned between dividing daughter cells, requires coordination of myosin II function, membrane trafficking and central spindle organization. Most known regulators act during late cytokinesis; a few, including the myosin II-binding proteins anillin and supervillin, act earlier. Anillin\u27s role in scaffolding the membrane cortex with the central spindle is well established, but the mechanism of supervillin action is relatively uncharacterized. We show here that two regions within supervillin affect cell division: residues 831-1281, which bind central spindle proteins, and residues 1-170, which bind the myosin II heavy chain (MHC) and the long form of myosin light chain kinase (l-MLCK). MHC binding is required to rescue supervillin deficiency, and mutagenesis of this site creates a dominant-negative phenotype. Supervillin concentrates activated and total myosin II at the furrow, and simultaneous knockdown of supervillin and anillin additively increase cell division failure. Knockdown of either protein causes mislocalization of the other, and endogenous anillin increases upon supervillin knockdown. Proteomic identification of interaction partners recovered using a high-affinity GFP nanobody suggest that supervillin and anillin regulate the myosin II- and actin cortical cytoskeletons through separate pathways. We conclude that supervillin and anillin play complementary roles during vertebrate cytokinesis

    PIN6 is required for nectary auxin response and short stamen development

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98417/1/tpj12184-sup-0001-FigS1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/98417/2/tpj12184.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/98417/3/tpj12184-sup-0004-FigS4.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/98417/4/tpj12184-sup-0003-FigS3.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/98417/5/tpj12184-sup-0002-FigS2.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/98417/6/tpj12184-sup-0005-FigS5.pd
    corecore