4 research outputs found

    Upscaling of perovskite solar modules: The synergy of fully evaporated layer fabrication and all‐laser‐scribed interconnections

    Get PDF
    Given the outstanding progress in research over the past decade, perovskite photovoltaics (PV) is about to step up from laboratory prototypes to commercial products. For this to happen, realizing scalable processes to allow the technology to transition from solar cells to modules is pivotal. This work presents all-evaporated perovskite PV modules with all thin films coated by established vacuum deposition processes. A common 532-nm nanosecond laser source is employed to realize all three interconnection lines of the solar modules. The resulting module interconnections exhibit low series resistance and a small total lateral extension down to 160 μm. In comparison with interconnection fabrication approaches utilizing multiple scribing tools, the process complexity is reduced while the obtained geometrical fill factor of 96% is comparable with established inorganic thin-film PV technologies. The all-evaporated perovskite minimodules demonstrate power conversion efficiencies of 18.0% and 16.6% on aperture areas of 4 and 51 cm2^{2}, respectively. Most importantly, the all-evaporated minimodules exhibit only minimal upscaling losses as low as 3.1%rei_{rei} per decade of upscaled area, at the same time being the most efficient perovskite PV minimodules based on an all-evaporated layer stack sequence

    Colloid cysts of the third ventricle: correlation of MR and CT findings with histology and chemical analysis.

    No full text
    Eight patients with colloid cysts of the third ventricle were examined with CT and MR. In six, surgical resection was performed and the material was subjected to histologic evaluation; the concentrations of trace elements were determined by particle-induced X-ray emission. Stereotaxic aspiration was performed in two. The investigation showed that colloid cysts are often iso- or hypodense relative to brain on CT (5/8), but sometimes have a center of increased density. Increased density did not correlate with increased concentration of calcium or other metals but did not correlate with high cholesterol content. Colloid cysts appear more heterogeneous on MR (6/8) than on CT (3/8), despite a homogeneous appearance at histology. High signal on short TR/TE sequences is correlated with a high cholesterol content. A marked shortening of the T2 relaxation time is often noticed in the central part of the cyst. Analysis of trace elements showed that this phenomenon is not related to the presence of metals with paramagnetic effects. Our analysis of the contents of colloid cysts does not support the theory that differing metallic concentrations are responsible for differences in MR signal intensity or CT density. We did find that increased CT density and high MR signal correlated with high cholesterol content
    corecore