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Abstract

Given the outstanding progress in research over the past decade, perovskite photo-

voltaics (PV) is about to step up from laboratory prototypes to commercial products.

For this to happen, realizing scalable processes to allow the technology to transition

from solar cells to modules is pivotal. This work presents all-evaporated perovskite

PV modules with all thin films coated by established vacuum deposition processes. A

common 532-nm nanosecond laser source is employed to realize all three intercon-

nection lines of the solar modules. The resulting module interconnections exhibit low

series resistance and a small total lateral extension down to 160 μm. In comparison

with interconnection fabrication approaches utilizing multiple scribing tools, the pro-

cess complexity is reduced while the obtained geometrical fill factor of 96% is com-

parable with established inorganic thin-film PV technologies. The all-evaporated

perovskite minimodules demonstrate power conversion efficiencies of 18.0% and

16.6% on aperture areas of 4 and 51 cm2, respectively. Most importantly, the all-

evaporated minimodules exhibit only minimal upscaling losses as low as 3.1%rel per

decade of upscaled area, at the same time being the most efficient perovskite PV

minimodules based on an all-evaporated layer stack sequence.
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1 | INTRODUCTION

Hybrid metal-halide perovskite semiconductors are considered as one

of the most promising candidates in the field of emerging photovol-

taics (PV). As a result of their excellent optoelectronic properties1–3

and an extensive research effort over the past decade, power conver-

sion efficiencies (PCEs) of perovskite solar cells now exceed 25%.4

Thus, from a performance point of view, perovskite solar cells are

ready to compete with more well-established PV technologies such as

wafer-based crystalline silicon, as well as thin-film based copper

indium gallium diselenide (CIGS) and cadmium telluride (CdTe) tech-

nologies.5 However, in view of the commercialization of perovskite

PV, several key challenges remain unsolved including long-term opera-

tional stability, toxicity, and upscaling to industrially relevant device

areas.6–8 Extensive research on the composition of the perovskite

absorber material and device architecture aims to increase long-term

stability and reduce the reliance on harmful solvents and lead-

containing precursors.9,10 Scaling the technology requires processes

that provide high homogeneity, reproducibility, and production yield

independent of device area, ultimately enabling a process transfer

from laboratories to commercial fabrication lines.6,11

Today, spin coating remains the most common laboratory-based

method to deposit small-scale perovskite solar cells as it allows for

simple screening of both materials and processes.12–14 However, the

transfer of developed spin-coating processes to larger areas is limited

as process conditions are significantly changing for different substrate

areas, requiring a meticulous reoptimization of process parameters

and substitution of some fabrication steps (such as solvent quenching

approaches).15–17 As an alternative, scalable solution-based deposition

techniques such as blade coating, slot-die coating, or inkjet printing

have demonstrated scalability of perovskite PV to areas up to

804 cm2.15,18 (In order to ensure the comparability of presented

results, all areas and PCE values are given in the following in relation

to aperture area. To provide transparency, the originally reported

active area values are given in Table S1. The used area terminology

for this work is defined in Figure S2.) For example, Deng et al. demon-

strated a highly efficient and stable 29.5-cm2 minimodule with a stabi-

lized PCE of 18.6% (calculated from reported 20.2% active area PCE),

utilizing blade coating and an improved defect compensation.19

Regarding further upscaling, Di Giacomo et al. fabricated a 144-cm2

perovskite PV module via slot-die coating, employing an optimized

drying process enabling a stabilized PCE of 13.8% (calculated from

reported 14.5% active area PCE).20 Furthermore, the Panasonic Cor-

poration demonstrated an 804-cm2 perovskite PV module exhibiting

an averaged initial PCE of 17.9%.5 Despite these advances, upscaling

perovskite solar cells via solution-based deposition techniques

remains challenging, as apparent in the significant decline in perfor-

mance when increasing the device area. This aspect is illustrated in

Figure 1 that shows the PCEs as a function of aperture area for

laboratory-scale solar cells and modules processed by different depo-

sition techniques (further information is summarized in Figure S1 and

Table S1).5,16,17,19–87 In particular, blade coating—currently one of the

most promising upscaling deposition techniques for perovskite PV—

exhibits a PCE loss of 19.7%rel, when increasing the device area from

0.8 to 42.9 cm2.43 Comparing the latest efficiency records of perov-

skite solar cells and modules processed by any technology, upscaling

losses of 7.4%rel per decade (dec) of upscaled area are observed (see

Equation S1).5

Minimizing the upscaling losses of perovskite PV requires

addressing two criteria: (1) homogenous and defect-free deposition of

all functional layers and (2) fabrication of module interconnections

with optimal electrical properties and minimal lateral extension.6

Despite all promises of solution-based deposition methods—such as

high-throughput fabrication via roll-to-roll approaches—the inherent

process properties pose significant challenges regarding the first crite-

rion.73,88 In particular, the interaction of solvents, solids, and the envi-

ronment remains a problem as drying, nucleation, and crystallization

in solution-based methods is complex to monitor with increasing

F IGURE 1 Power conversion
efficiencies (aperture area values)
as a function of the aperture area
obtained for perovskite solar cells
and modules processed with
different scalable deposition
techniques. Data points marked
with an asterisk (*) represent
recent solar module records from
industry. Upscaling losses from
recent record solar cells (typically
0.1 cm2) to record modules
(804 cm2) are found to be 7.4%rel

/dec. Detailed information about
the data points is summarized in
the supporting information (see
Figure S1 and Table S1). Data
points of this work are highlighted
with a star [Colour figure can be
viewed at wileyonlinelibrary.com]
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area.89 The use of additives and the modification of the drying and

crystallization dynamics via gas and solvent quenching have report-

edly improved the homogeneity for larger areas of several square cen-

timeters up to occasionally above 100 cm2.20,43,89–91 However, these

adaptions further increase process complexity and complicate subse-

quent optimizations and upscaling in general.92

As an alternative to solution-based approaches, co-evaporation of

organic and inorganic salts has been developed and proved to yield

excellent homogeneity for areas up to 21 cm2.25,67,93,94 Today, vapor-

based deposition techniques are the dominant technology for the vast

majority of commercialized optoelectronic devices and in particular

thin-film PV technologies. The focus on vapor-based methods in indus-

try is founded on good homogeneity in material composition and layer

thickness as well as high production yield.95 Remarkable progress has

been demonstrated with vapor-deposited perovskite solar cells achiev-

ing PCEs as high as 20.6%.96 Recently, alternative absorber

compositions—beyond the classical methylammonium lead triiodide

(CH3NH3PbI3) absorbers—were also introduced for vapor-based

methods. These include multication perovskites,97 which are known to

provide better stability and performance,98 wide-bandgap absorbers for

the future use in tandem solar cells,99 and lead-free perovskites.100 Per-

haps of particular interest is also the concept of fully vapor-based

perovskite solar cells, as it reduces complexity and types of systems

required. Despite the potential of vapor-based deposition techniques,

there are currently few reports relating to vapor-based perovskite PV

modules. First, a team composed of some of the present authors

employed an all-evaporated layer stack to achieve 8.8% PCE in back-

ward current–density–voltage (J–V) scan direction for a 3.2-cm2 module

(calculated from reported 12.4% active area PCE), while second, Li et al.

demonstrated a 29.2-cm2 aperture area device with a PCE of 13.1%

(calculated from reported 18.1% active area PCE).25,67

Beyond challenges arising from the upscaling of the deposition

process itself, thin-film PV modules require monolithic interconnec-

tion of solar cell stripes to compensate for the limited conductivity of

the front transparent conductive oxide (TCO). As a consequence of

the solar module interconnection, two loss mechanisms arise, namely,

(1) contact resistance at the interconnections and (2) a reduction of

the active area required for the interconnection.101,102 Therefore, in

order to maximize performance in thin-film PV modules, it is crucial to

minimize these individual losses by employing suitable scribing

methods and interconnection layouts. Realization of the three essen-

tial interconnection lines (commonly referred to as P1, P2, and P3) is

performed via either mechanical scribing,103 chemical etching, lift-off

processes,27,104 laser scribing,59 or a combination of these methods.

Mechanical scribing is a simple, cheap, and established process in the

CIGS PV industry, relying on this method for the P2 and P3 scribing

lines as laser scribing approaches commonly result in heat-induced

shunts.105,106 However, mechanical scribing is accompanied by unfa-

vorable process restrictions such as tool wear, chip formation, and

incompatibility with flexible substrates.59,107

All-laser-scribed thin-film solar module interconnection is an

industrial standard and applied already for decades in amorphous sili-

con (a-Si), CdTe, and tandem thin-film a-Si-based modules.108,109 The

process provides high throughput due to fast scanning speeds, low

maintenance, and is compatible with flexible substrates due to non-

contact processing.43,110 Consequently, laser scribing is of key interest

for perovskite solar module interconnections, enabling the fabrication

of scribing lines of only few tens of micrometers lateral extension and

of good electrical properties.103,111 In this context, Di Giacomo et al.

have demonstrated that resistive losses for an upscaling process of

over two orders of magnitude in area can be limited to only about

3%rel by employing all-laser-scribed interconnection lines.59 Further-

more, by developing a laser-scribed point contact interconnection

scheme, Rakocevic et al. have shown that the active area loss can be

reduced to as little as 1%rel for a 4-cm2 aperture area device.102

It should be noted that most previous studies on all-laser-scribed

interconnections of perovskite minimodules used more than one lasing

source to process all three interconnection lines (e.g., with different

wavelengths) and in many cases picosecond and femtosecond laser

sources were applied.59,69,112–114 While shorter pulses commonly allow

for more selective laser ablation, the complexity and also price of such

lasing sources increases below 100 picoseconds. For this reason, pro-

duction sites of established thin-film PV technologies (e.g., a-Si and

CdTe) make use of nanosecond lasing sources.115,116 However, a few

studies also report on the exclusive use of nanosecond lasers for fabri-

cation of perovskite solar module interconnections. Ren et al. have

demonstrated the feasibility of utilizing a single 532-nm nanosecond

laser source to fabricate all three interconnections lines for a spin-

coated layer stack, reporting a promising 18.7% PCE for a 25-cm2 (aper-

ture area) perovskite minimodule with 90.8% geometrical fill factor

(GFF) and reference solar cells of 22% PCE.70 Furthermore, employing a

1064-nm nanosecond laser source and a co-evaporated perovskite

layer with solution-processed transport layers, Li et al. successfully fab-

ricated an all-laser-scribed 7.1-cm2 (aperture area) perovskite

minimodule with 90.7% GFF and 16.7% PCE (calculated from reported

18.4% active area PCE), reference solar cells exhibiting 19.1% PCE.24

Nevertheless, upscaling losses of 14.8%rel (Ren et al.) and 12.6%rel

(Li et al.) exhibit a substantial deficit to the theoretically obtainable

losses. Consequently, an optimization of GFF and of resistive losses is

required. It is further reasonable to assume that a transfer to vapor-

based deposition can reduce losses induced by process parameter

changes occurring when scaling up deposition area of spin coating.

In response to these challenges, this work combines for the first

time the concept of all-evaporated perovskite solar modules with all-

laser-scribed monolithic interconnections, mitigating upscaling losses

to values achieved for state-of-the-art PV technologies such as CIGS,

crystalline silicon (c-Si), and CdTe. By utilizing vapor-based deposition

and a nanosecond laser for scribing of interconnections, both being

established manufacturing methods for other thin-film technologies,

facile upscaling of device area for perovskite PV is demonstrated.

First, detailed analyses of the scribing process by scanning electron

microscopy (SEM), energy-dispersive X-ray (EDX) analysis, and mea-

surements of characteristic resistances, which affect series and paral-

lel resistances of finished devices, are presented. Employing a 532-nm

nanosecond laser and adjusting only its fluence and scribing speed, all

three scribing lines exhibit selective material removal. The obtained

RITZER ET AL. 3



GFF reaches up to 96% and the scribing speed at 10-kHz repetition

rate corresponds to 50, 33, and 100 mm s�1 for the P1, P2, and P3

scribing line, respectively. Making use of photoluminescence

(PL) imaging and laser beam-induced current (LBIC) mapping, the

homogeneous layer deposition of the all-evaporated perovskite layer

stack sequence is validated. Efficient PV minimodules with PCEs of

18.0% and 16.6% on aperture areas of 4 and 51 cm2, respectively are

demonstrated. Considering the increase in device area by a factor of

up to 500, upscaling losses as small as 3.1%rel/dec of upscaled device

area are obtained.

2 | RESULTS AND DISCUSSION

2.1 | Facile all-laser-scribed interconnection
processing

Perovskite PV needs strategies that offer simple, industrially applica-

ble, yet highly efficient upscaling in order to reach industrial maturity.

To address this challenge, the combination of an all-laser-scribed

interconnection process and all-evaporated layer stack sequence is

demonstrated in this work. Figure 2 illustrates a potential future

industrial inline process for the fabrication of perovskite solar mod-

ules, combining vapor-based deposition of all functional layers and

laser scribing of the module interconnection lines. In the following,

laser scribing of all three module interconnection lines by employing a

532-nm nanosecond laser setup is shown to be a simple approach

combining the fundamental requirements of (1) high scribing quality,

(2) facile process optimization and controllability, and (3) good integra-

bility into a deposition system. Optimization is performed based on

the all-evaporated layer stack sequence of indium tin oxide (ITO),

2,20,7,70-tetra(N,N-di-p-tolyl)amino-9,9-spirobifluorene (spiro-TTB),

methylammonium lead iodide (CH3NH3PbI3), fullerene (C60), bat-

hocuproine (BCP), and gold (Au) or silver (Ag) that has recently been

reported for perovskite solar cells of 0.105-cm2 active area (see inset

in Figure 2).117 Utilizing the exact same evaporation system, materials,

and parameters for deposition ensures applicability of previously pres-

ented chemical analyses and allows focusing in this work on charac-

terization methods suited to evaluate the properties and quality of

upscaled layers. The custom-built laser scribing setup consists of an

enclosed optical system mounted underneath a glovebox and a sam-

ple compartment inside the glovebox, enabling easy accessibility for

maintenance, while minimizing health risks posed by the laser and the

sample's chemical constituents. Combining multiple standard compo-

nents, the optical system integrates a conventional 1064-nm nanosec-

ond neodymium-doped yttrium orthovanadate (Nd:YVO4) laser with

frequency doubling, a compact galvanometer scanner system for fast

and flexible laser beam deflection with accurate focusing, and a cam-

era system for high precision alignment during the multiple monolithic

scribing steps. The sample compartment is separated from the optical

system by an optical window enabling possible integration into a

future inline deposition process, while the nitrogen atmosphere inside

the glovebox protects functional layers of the solar module against

detrimental effects of water, oxygen, or dust particles. During laser

scribing, samples inside the glovebox are under permanent laminar

nitrogen flow to remove ablation debris from the surface. In order to

reduce process complexity, the laser is operated at one ablation wave-

length (here 532 nm), continuous repetition rate (here 10 kHz), and at

one focus length for all three ablation processes. The three individual

scribing lines of the solar module are optimized with regard to charac-

teristic resistances, resulting in high-quality laser scribing lines with

well-defined and well-separated process windows. Scribing layouts

and contacting schemes are depicted in Figure S3.

In order to illustrate the ease of optimizing the two-parameter

scribing process, the influence of fluence on the characteristic resis-

tance is discussed. The P1 and P3 scribing lines separate individual

solar cell stripes from each other by insulating adjacent front elec-

trode and back electrode stripes, respectively (i.e., infinite series resis-

tance over these scribing lines). The P2 scribing line connects two

neighboring cell stripes by establishing a contact between the rear

electrode and the front TCO. A serially interconnected solar cell is

depicted in the inset of Figure 2. Targeting a minimized detrimental

F IGURE 2 Perovskite solar module fabrication based on a potential inline manufacturing process. The inset shows the investigated layer
stack sequence employed in this work for the fabrication of all-evaporated perovskite solar modules [Colour figure can be viewed at
wileyonlinelibrary.com]
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effect on the device's PCE of well below 1%rel decrease, the contact

needs to provide a low series resistance via the P2 interconnection

line, corresponding to 1 Ω or less for the utilized measurement layout.

The correlation of P2 interconnection resistance and expected losses

is depicted in Figure S4. This necessitates full removal of the electron

transport layer (ETL), the perovskite absorber layer, and the hole

transport layer (HTL). Optimizing of fluence and scribing speed, the

aspired resistances are achieved for all three scribing lines, being illus-

trated in Figure 3A–C. For the scribing lines P1 and P3, maximum

resistances between adjacent solar cell stripes without damaging the

underlying glass substrate and ITO front electrode are achieved in a

fluence range of 1.50–3.50 and 0.22–0.45 J cm�2 at scanning speeds

of 50 and 100 mm s�1, respectively. Minimal P2 contact resistance

down to 0.67 Ω is obtained at fluences of 0.25–0.6 J cm�2 and scan-

ning speed of 33 mm s�1. The trends in characteristic resistances cor-

relate well with the scribing line uniformity observed in microscopy

images (see Figure S5). These rather broad process windows for each

of the scribing lines imply that the process is robust and tolerant

against lasing intensity and layer thickness variations, giving sufficient

leeway for a reproducible process. The uniform ablation for the indi-

vidual scribing lines is confirmed by SEM images (see Figure 3D–F),

showing clean and debris-free trenches. P1, P2, and P3 scribing lines

with lateral extensions of only 60, 50, and 25 μm, respectively, are

demonstrated. Supplementary SEM images are depicted in Figure S6.

F IGURE 3 Development of high-quality laser scribing lines utilizing only one wavelength of a cost-efficient nanosecond lasing source
providing minimal process complexity. (A–C) Optimization of the characteristic resistances of P1, P2, and P3 scribing lines by adjusting the
fluence at fixed scribing speed. The highlighted areas illustrate the optimal process window, while the blue arrow marks the chosen scribing
parameter for device fabrication in this work. The dashed line connecting data points depicts the trend as guide to the eye. (D–F) SEM images
and (G–I) EDX investigations of the individual scribing lines. Amplitude depicts respective element count [Colour figure can be viewed at
wileyonlinelibrary.com]

RITZER ET AL. 5

http://wileyonlinelibrary.com


Particularly laser scribing of the P3 scribing line has been reported in

literature as challenging due to detrimental debris formation or delam-

ination of the back contact causing shunts in minimodules.113,118 An

optimized parameter set overcomes this challenge as illustrated in

Figure S5h. The total inactive interconnection width including align-

ment tolerances of less than 160 μm is comparable with or even sur-

passes previously reported laser-scribed interconnections of

perovskite minimodules based on multiple laser sources.59,69,113 The

results are further supported by EDX measurements of individual

scribing lines. Excellent separation of adjacent solar cell stripes and

selective material removal is confirmed through complete removal of

ITO and Au, respectively, shown by the distinct reduction in the

indium and gold signals (see Figure 3G,I). Likewise, the residual-free

interconnection is supported by the negligible lead signal (see

Figure 3H), indicating a complete ablation of all functional layers

between front and back contact while the underlying ITO layer is not

negatively affected.

2.2 | Homogeneous and defect-free large area
layer deposition and interconnection

Having developed a laser scribing process that provides uniform, low-

resistance module interconnections within comfortable process win-

dows at a single laser wavelength, the scalable deposition of the all-

evaporated solar cell layer stack is assessed. PL imaging is employed

to assess the material composition and deposition and crystallization

homogeneity of the co-evaporated perovskite absorber on substrate

areas up to 64 cm2, synonymous with a minimodule aperture area of

51 cm2 with 18 solar cell stripes (see Figure S7). The P1 and P2 scrib-

ing lines are already introduced into the layer stack. The homoge-

neous deposition of the absorber is achieved over the complete

substrate area as shown in Figure 4A. This includes the immediate

proximity to the substrate edge, facilitating minimal extent of

unusable areas around the edges. The latter is a common problem for

solution-based approaches, where edge effects result in

F IGURE 4 Analysis of layer homogeneity and interconnection functionality for all-evaporated all-laser-scribed solar modules. (A) PL imaging
of the perovskite absorber deposited on a 64-cm2 substrate (51-cm2 aperture area) without ETL and back contact but with TCO and HTL. The
slightly brighter ring in the center of the substrate is a measurement artifact attributable to the circular excitation illumination of the PL setup.
(B) High-resolution LBIC mapping of a 4-cm2 aperture area solar module comprised of five interconnected subsolar cells. (C) LBIC mapping of a
51-cm2 aperture area solar module consisting of 18 interconnected subsolar cells together with a high-resolution close-up view of the highlighted
area. Different scales of the axis should be considered [Colour figure can be viewed at wileyonlinelibrary.com]
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inhomogeneous layer deposition close to the substrate edge and thus

a reduction of the maximum usable substrate area.87,119,120 Few

defects on the substrate are observed and attributed to crystallization

defects caused by dust particles due to the fabrication in a non-

cleanroom environment. It should be noted that the slightly brighter

ring pattern in the center of the substrate is a measurement artifact

attributable to the circular illumination in the PL imaging setup and

not a material-related measurement signal.

Combining homogenous absorber deposition of the all-

evaporated layer stack and uniform laser scribing, the charge carrier

generation and extraction is assessed. Thereby, the homogeneity in

photocurrent generation of the all-evaporated all-laser-scribed solar

modules is verified in LBIC mapping studies of minimodules with aper-

ture areas of 4 and 51 cm2.121 Respective layouts are depicted in

Figure S7. Being illustrated in Figure 3B, a minimodule consisting of

five interconnected solar cell stripes with a combined aperture area of

4 cm2 demonstrates a very homogenous charge carrier generation

and extraction with only minor handling defects. The uniform signal

amplitude within the solar cell stripes confirms the homogeneity of

not only the absorber layer but also all functional layers of the layer

stack. The latter is of particular importance, as the vapor-based depo-

sition of the absorber on an inhomogeneous (solution-processed) sub-

strate material can also result in inhomogeneous film formation

dynamics for the absorber and thus inhomogeneous charge carrier

generation and extraction.117 In addition, uniform signal amplitude

across different solar cell stripes further highlights the homogeneous

parallel resistance of individual solar cell stripes of the minimodule,

demonstrating the high quality of the interconnection process.121 Fur-

thermore, the LBIC study confirms the low interconnection width of

160 μm synonymous with a GFF as high as 96%. This allows to com-

pete with established thin-film PV and with perovskite minimodules

fabricated with picosecond or femtosecond lasers as well as mixed

laser and mechanical scribing processes.24,104,114,122

Similar homogeneity with only minor variation of parallel resis-

tance is also demonstrated for an increase in aperture area and inter-

connection line length by more than one decade. This is illustrated in

Figure 3C, depicting the LBIC mapping for a minimodule consisting of

18 interconnected solar cell stripes with a total aperture area of a

51 cm2, where only signal variations of different cell stripes but not

within individual cell stripes are visible. A close-up LBIC mapping of

the center region of the minimodule, as shown in Figure 3D, reveals

similar charge carrier generation homogeneity as was achieved for the

4-cm2 minimodule with only a slight decrease in GFF to a value of

94%. Thereby, this minimodule significantly surpasses GFFs previ-

ously reported by Abzieher et al.67 and Li et al.25 for minimodules

employing coevaporated perovskite absorbers, while also increasing

the device area by up to one decade compared with previous reports.

Presented for the first time for all-evaporated perovskite PV devices,

the absence of inhomogeneities and signal gradients within cell stripes

of the 51-cm2 module demonstrates the high uniformity and repro-

ducibility of all-evaporated layer stacks independent of substrate

dimensions. Having employed identical process parameters for the

fabrication of devices of different areas, the high homogeneity of

layer and interconnection fabrication reveals the ease of upscaling of

the developed approach for all-evaporated all-laser-scribed

minimodules and therefore its excellent transferability to potentially

even larger areas.

2.3 | Efficient upscaling of all-laser-scribed all-
evaporated perovskite modules

Next, the performance of lab-scale reference solar cells is compared

with prototype modules of much larger dimension: Small minimodules

consist of five solar cell stripes (each of a size of 0.4 cm � 2 cm) con-

nected in series with a total aperture area of 4.0 cm2. Largest

minimodules consist of 18 solar cell stripes (each of a size of

0.4 cm � 7.1 cm), resulting in a total aperture area of 51.12 cm2. As

illustrated in Figure 1, the latter corresponds to one of the largest

minimodules demonstrated in literature with up to four orders of mag-

nitude larger device areas compared with small-area record solar cells

commonly reported. Both minimodule designs are based on a cell

stripe width of 4 mm (combining the active and interconnection

width) with variable lengths, achieving GFFs of 96% and 94% for small

and large solar modules, respectively (see Figure S7). In order to

ensure comparability between different batches, reference solar cells

with active areas of 0.105 cm2 were processed in parallel. The

employed all-evaporated layer stack sequence ITO/spiro-TTB/CH3

NH3PbI3/C60/BCP/Au was introduced in an earlier work as a high-

performance, low-hysteresis architecture with good short-term stabil-

ity and reproducibility (see Figures S8–S10).117

Champion minimodules with an aperture area of 4.0 cm2 (GFF of

96%) demonstrate PCEs as high as 18.0% with a fill factor (FF) of

81%, an open-circuit voltage (VOC) of 5.5 V, and a short-circuit current

density (JSC, cell stripe) of 20.2 mA cm�2 in backward scan direction.

Considering the forward scan direction with PCEs of 17.7%, a FF of

81%, a VOC of 5.5 V, and a JSC, cell stripe of 20.0 mA cm�2, only minimal

hysteresis is apparent (see Figure 5A and Table 1). It should be noted

that the JSC, cell stripe reported here relates to the aperture area of one

solar cell stripe, allowing a better comparison to reference solar cells.

The respective performance with regard to the active area is summa-

rized in Table 1. In particular, the high FF and VOC are emphasized,

which highlight the high quality of the module interconnection. Com-

pared with the champion reference solar cell with a PCE of 19.3% in

backward and 19.2% forward scan direction (see Figures S11 and

S12), the PCE loss of only 6.7%rel correlates via GFF with the active

area PCE loss of only 2.7%rel (see Figure 5B). Considering the increase

by more than one decade in area, this is synonymous with a relative

performance loss per decade in area of only 4.3%rel/dec. The loss

attributed to the GFF accounts for the largest proportion of 2.5%rel

/dec, as the interconnection area had to be introduced as an incre-

ment of fixed minimal width for a relatively small upscaling. Loss

mechanisms related to the upscaling itself (e.g., interconnection dam-

ages, increased resistances, or defects and inhomogeneities in the

upscaled layers) result in total to a minimal loss of only 1.7%rel/dec.

Compared with our earlier work (GFF of 19.5%rel/dec, other upscaling
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losses of 9.8%rel/dec) as well as other literature,117 this is a very sig-

nificant progress.

Demonstrating the efficient upscaling process on even larger

device areas, minimodules with aperture areas of 51.1 cm2 (GFF of

94%) are discussed next. Champion solar modules achieve PCEs as

high as 16.6% with a FF of 82%, a VOC of 19.0 V, and a JSC, cell stripe of

19.1 mA cm�2 in backward scan direction and PCEs of 16.5% with a

FF of 81%, a VOC of 19.0 V and a JSC, cell stripe of 19.3 mA cm�2 in for-

ward scan direction (see Figure 5C and Table 1). Again, the obtained

FF and VOC highlight the high quality of the module fabrication. In

addition, to the authors' best knowledge, the herein demonstrated

devices are the best perovskite minimodules with aperture areas

above 50 cm2 demonstrated in research at the time of writing (see

also Figure 1 and Table S1). Slightly lower performance values com-

pared with the smaller minimodules are mainly explained by the

reduction of GFF and the slightly lower performance of the deposition

process, with reference solar cells exhibiting PCEs of 18.1% in back-

ward and 17.9% in forward scan direction (see Figures S11 and S12).

F IGURE 5 Device performance of all-evaporated all-laser-scribed solar modules with different device areas. J-V characteristics of all-
evaporated all-laser-scribed perovskite modules with aperture areas of 4.0 cm2 (A) and 51.1 cm2 (C), consisting of 5 and 18 monolithically
interconnected solar cell stripes, respectively. (B) Comparison of the upscaling losses for mini-modules of different device areas. The values are
normalized with regard to the performance of the small-area reference solar cells (0.105 cm2). (D) Short-term stability under continuous
illumination during MPP tracking for the champion mini-module with 51.1 cm2 aperture area. MPP tracking is performed at normal operating cell
temperature (NOCT) conditions without active cooling of the mini-module [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Comparison of aperture and active area solar module parameters extracted from backward (forward) J–V scans of all-evaporated

all-laser-scribed perovskite solar modules with different device areas

Aperture
area (cm2)

GFF
(%)

Aperture area values Active area values

PCE (%) FF (%) VOC (V)
JSC, cell
(mA cm�2)

JSC, module

(mA cm�2) ISC (mA) PCE (%)
JSC, cell
(mA cm�2)

JSC, module

(mA cm�2)

4.0 96 18.0 (17.7) 81.0 (81.0) 5.5 (5.5) 20.2 (20.0) 4.0 (4.0) 16.1 (16.0) 18.8 (18.4) 21.0 (20.8) 4.2 (4.2)

51.1 94 16.6 (16.5) 82.0 (81.0) 19.0 (19.0) 19.1 (19.3) 1.1 (1.1) 51.1 (54.7) 17.6 (17.5) 20.3 (20.5) 1.1 (1.1)
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Considering relative PCE losses (see Figure 5B) and upscaled area,

even smaller upscaling losses of 3.1%rel/dec are obtained for these

larger minimodules, with an influence of the GFF of 2.2%rel/dec and

only 0.9%rel/dec loss due to other mechanisms. In addition, the all-

evaporated solar modules exhibit stable power output with a stabi-

lized PCE of up to 16.1% after 30 min of maximum power point

(MPP) tracking (see Figure 5D). The slight reduction in stabilized PCE

is a result of the MPP tracking under nominal operating cell tempera-

ture (NOCT) conditions without any active cooling. Nevertheless, sim-

ilar short-term stability is achieved for the small-area solar cells

tracked under standard test conditions (STC) (see also Figure S8).

In the following, the above-reported performance of all-

evaporated perovskite solar modules is put in context to the perfor-

mance of state-of-the-art perovskite minimodules reported in litera-

ture (see Table S2). Figure 6 illustrates that upscaling losses in the all-

evaporated approach are highly reduced compared with the signifi-

cantly more extensively investigated solution-based approaches. The

lower upscaling losses are in part attributable to the excellent homo-

geneity of the deposition of all functional layers via vapor-based

deposition methods, resulting from a far simpler upscaling process

than for solution-based approaches. While losses related to the GFF

have only slightly improved, the fabrication of state-of-the-art inter-

connections via facile laser scribing process utilizing an industrially

viable nanosecond laser needs to be stressed. In combination,

upscaling losses of only 3.1%rel/dec are achieved here, a significant

improvement to the already published current champion minimodules

demonstrated by both Dai et al. and Ren et al. for blade-coated

(7.2%rel/dec) and spin-coated (6.9%rel/dec) perovskite minimodules,

respectively. It should be further noted that the presented perovskite

minimodule area was more than doubled compared with the cham-

pion minimodule of Ren et al. The presented results denote also an

important progress for the vapor-processed perovskite solar modules

in general, both within our group and compared with the previously

reported minimodules. Li et al. employed vapor processing for the

deposition of the perovskite absorber while all charge selective trans-

port layers were prepared via solution-based methods, upscaling

losses of 12.1%rel/dec and 3.3%rel/dec attributed to the GFF and to

other mechanisms, respectively, were demonstrated. The improve-

ment achieved with our employed all-evaporated layer stack further

highlights the prospects of an all-vapor-based layer fabrication. Most

importantly, upscaling-related losses of perovskite PV are reduced

here for the first time to values of established PV technologies, being

an important step for the perovskite-based technology in general and

its prospects for future commercialization. In particular, the upscaling

losses reported here for all-evaporated perovskite solar modules are

comparable with CIGS and CdTe thin-film modules that are also reli-

ant on vapor-based deposition techniques.

The achieved cell-to-module active area PCE loss of only 2.3%rel

are in very good agreement with the predicted losses of the theoreti-

cal model of Di Giacomo et al. (2%rel).
59 The accurate prediction of

active area PCE losses, originating from resistive losses, proves that

losses caused by upscaling-related inhomogeneities are insignificant

for vapor-based deposition. Hence, based on the area-independent

resistive losses, as well as the negligible losses due to

F IGURE 6 Comparison of relative upscaling losses per decade of upscaled area (dec) for recently reported perovskite solar modules utilizing
different fabrication techniques. Gray circles illustrate the achieved maximum aperture areas of the respective solar modules. Background values
highlight the upscaling losses commonly achieved for monocrystalline silicon, CdTe, and CIGS solar modules5,24,25,43,67,69,70,77 [Colour figure can
be viewed at wileyonlinelibrary.com]
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inhomogeneities, the non-GFF-related losses are expected to remain

constant at around 2%rel for further upscaling in area. Therefore, the

upscaling to even larger areas, being possible with larger evaporation

systems, is not expected to result in major differences in upscaling

efficiency, given the high homogeneity of layer deposition and inter-

connection fabrication.24,25,71,123–125 This is also indicated by achiev-

ing similar upscaling efficiencies for 4- and 51-cm2 devices. While

GFF-related losses increased to 6% for the 51-cm2 module, further

adjustments such as the reduction of distance between the individual

scribing lines is expected to reduce this loss to at least 4% as demon-

strated for the 4-cm2 minimodules. In that regard, the concept of

point interconnections recently introduced by Rakocevic et al. for

perovskite minimodules might also be of significant interest for fur-

ther development.102 Furthermore, the strong analogy of the devel-

oped approach to the manufacturing of established thin-film

technologies potentially benefits further upscaling via knowledge

transfer. For instance, the common utilization of additional scanner

lens systems to increase module width and throughput is expected to

enable the fabrication of modules of several hundred square centime-

ters with GFFs of 96% or above.126

3 | CONCLUSION

This work reports on all-evaporated perovskite solar modules,

highlighting the upscaling of this technology over several orders of

magnitude of device area with very low upscaling losses. Combining

an all-evaporated perovskite solar cell architecture with a 532-nm

nanosecond laser scribing system suitable for the processing of all

three interconnection lines at scribing speeds of up to 100 mm s�1,

interconnections with minimal total lateral extension of down to

160 μm and excellent electrical properties are processed. High homo-

geneity of the all-evaporated perovskite solar module layer stack dur-

ing upscaling to 51.1 cm2 (by a factor of 500) is demonstrated in PL

images and LBIC mappings, emphasizing the ease of homogenous

device fabrication when using exclusively vapor-based deposition

techniques. Prototype solar modules achieve PCEs of up to 18.0%

and 16.6% for aperture areas of 4.0 and 51.1 cm2, respectively. To

the authors' best knowledge, the latter represents the highest

reported PCE for an all-evaporated solar module of similar size. The

comparison of the achieved upscaling losses of only 3.1%rel/dec of

upscaled area with other upscaling approaches as well as established

thin-film PV technologies like CIGS, c-Si, and CdTe highlights the

excellent upscaling efficiency of the developed process.

4 | EXPERIMENTAL SECTION

4.1 | Substrate preparation

Following the established superstrate configuration of perovskite

solar cells, fabrication of all investigated devices utilized purchased

glass substrates coated with ITO (Luminescence Technology, CAS:

50926-11-9). For solar modules, substrate sizes of 30 � 30 mm2,

80 � 80 mm2, and 100 � 100 mm2 were used and laser scribed as

discussed below. Reference solar cells were fabricated onto

16 � 16 mm2 glass substrates with prepatterned ITO.

4.2 | Solar cell and module fabrication

The employed layer stack sequence ITO/spiro-TTB/CH3NH3PbI3/C60

/BCP/Ag for the all-evaporated solar cells and modules was discussed

in detail in a previous publication.117 Glass substrates coated with

prepatterned ITO were cleaned in acetone and isopropanol in an

ultrasonic bath for 10 min each, followed by an additional cleaning

step in an oxygen plasma for 3 min immediately before the deposition

of the first charge transport layer. Afterwards, substrates were trans-

ferred into a nitrogen-filled glovebox for the deposition of the func-

tional layers without further exposure to air. The <5-nm-thick

2,20 ,7,70-tetra(N,N-di-p-tolyl)amino-9,9-spirobifluorene (spiro-TTB,

Luminescence Technology, CAS: 515834-67-0) was thermally evapo-

rated in an OPTIvap evaporation system (CreaPhys GmbH) without

any doping. The perovskite absorber was fabricated by co-

evaporation of lead iodide (PbI2, TCI Deutschland GmbH, 99.99%

purity, CAS: 10101-63-0) and methylammonium iodide (CH3NH3I,

Luminescence Technology, >99.5% purity, CAS: 14965-49-2) in a

PEROvap evaporations system (CreaPhys GmbH). PbI2 was used for

several consecutive evaporation runs while CH3NH3I was replaced

after every deposition. Substrates and materials were kept in high

vacuum overnight for outgassing. In order to prevent a strong rise in

CH3NH3I background pressure and to facilitate rate detection, the

evaporation system was equipped with cooling shields around the

evaporation sources cooled to a temperature below �15�C. PbI2 was

evaporated at an evaporation rate of 1.5 Å s�1, CH3NH3I at an evapo-

ration rate between 2.0 and 2.5 Å s�1. Substrates were kept at a tem-

perature of 25�C during deposition. After deposition of the absorber,

samples were transferred back to the previous evaporation system for

the deposition of a 25-nm-thick C60 fullerene layer (Alfa Aesar, 98%,

CAS: 99685-96-8) and a 6-nm-thick bathocuproine layer (BCP, Lumi-

nescence Technology, CAS: 4733-39-5). As back contact, a 75- to

100-nm-thick gold or silver layer was used that was deposited in the

same evaporation system. Reference solar cells were evaporated

using a metal mask, resulting in a device area of 0.105 cm2.

4.3 | Laser scribing

For scribing of the individual scribing lines P1, P2, and P3, a custom-

built laser scribing setup was used (Bergfeld Lasertech GmbH). The

setup employed a 1-ns Nd:YVO4 laser (Picolo AOT 10-MOPA, InnoLas

Laser GmbH) with a wavelength of 1064 and 532 nm, variable fre-

quency and power output, a scanner system, a camera, and an air ven-

tilation and filtering circuit. In order to prevent any contact to ambient

atmosphere, the system was incorporated in a nitrogen-filled

glovebox. Accurate dimensions were ensured by calibrating scribing
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layouts via an optical microscope (Leitz Wetzlar). Patterning followed

the scribing layout shown in Figure S7. The P1 scribing process was

carried out before deposition of the first charge transport layer (spiro-

TTB) to guarantee a homogeneous film formation of the vapor-

processed perovskite absorber, utilizing a scribing speed of 50 mm s�1

and a laser pulse fluence of with 2 J cm�2. A reference mark was

ablated for subsequent alignment of P2 and P3 scribing lines. After

deposition of all functional layers including the second charge trans-

port layer (C60/BCP) and alignment with the reference mark, the P2

lines were scribed at a speed of 33 mm s�1 and a laser pulse fluence

of 0.35 J cm�2. Finally, after deposition of the rear electrode and align-

ment, the P3 lines were scribed at a scribing speed of 100 mm s�1 and

laser pulse fluence of 0.3 J cm�2. All scribing lines were fabricated at a

laser pulse frequency of 10 kHz from the film side.

4.4 | Characterization

SEM and EDX spectroscopy investigations were performed in a Zeiss

LEO1530 scanning electron microscope with in-lens and EDX detec-

tor. In order to prevent charge up of the glass substrate during the

investigation of the P1 scribing line, the substrate was covered with a

3-nm-thick sputtered layer of platinum before investigation. Micros-

copy images were taken by a BH2-UMA (Olympus Corporation). A

2.1-megapixel scientific CMOS camera (Quantalux sCMOS Camera by

Thorlabs) was used to detect the PL signal, yielding spatially resolved

PL images. A 470-nm excitation LED ring (HPR2 by CCS Inc.) was uti-

lized as illumination source. The residual excitation light was filtered

out by placing a 780-nm longpass filter (FGL780S by Thorlabs) in front

of the camera. All measurements were performed in ambient air. Laser

beam-induced current (LBIC) mapping was conducted in a custom-

built setup employing a continuous 532-nm laser for illumination, a

chopper and lock-in amplifier (SR830, Stanford Research Systems)

operating at 66 Hz for signal enhancement, and a motorized sample

stage for scanning. In order to avoid degradation during LBIC mea-

surements, devices were flushed with a continuous stream of nitro-

gen. x and y resolutions corresponded to 0.1 and 1.0 mm for standard

measurements, respectively, and to 0.1 and 0.2 mm for high-

resolution measurements. Current–density–voltage (J–V) measure-

ments were carried out in a solar simulator (Newport Oriel Sol3A)

under global standard AM1.5G radiation, whose intensity was cali-

brated with a silicon reference solar cell equipped with a KG5 short

pass filter. Scans were performed in forward and backward direction

at a scanning speed of about 0.6 V s�1. Continuous measurements of

the MPP were conducted by using a perturb-and-observe algorithm.

For small-area reference cells, the temperature was kept constant at

25�C by utilizing a microcontroller regulated Peltier element. Solar

modules were not actively cooled during measurement.
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