6,994 research outputs found

    Chiral Symmetry Breaking and Confinement Beyond Rainbow-Ladder Truncation

    Full text link
    A non-perturbative construction of the 3-point fermion-boson vertex which obeys its Ward-Takahashi or Slavnov-Taylor identity, ensures the massless fermion and boson propagators transform according to their local gauge covariance relations, reproduces perturbation theory in the weak coupling regime and provides a gauge independent description for dynamical chiral symmetry breaking (DCSB) and confinement has been a long-standing goal in physically relevant gauge theories such as quantum electrodynamics (QED) and quantum chromodynamics (QCD). In this paper, we demonstrate that the same simple and practical form of the vertex can achieve these objectives not only in 4-dimensional quenched QED (qQED4) but also in its 3-dimensional counterpart (qQED3). Employing this convenient form of the vertex \emph{ansatz} into the Schwinger-Dyson equation (SDE) for the fermion propagator, we observe that it renders the critical coupling in qQED4 markedly gauge independent in contrast with the bare vertex and improves on the well-known Curtis-Pennington construction. Furthermore, our proposal yields gauge independent order parameters for confinement and DCSB in qQED3.Comment: 8 pages, 6 figure

    Impact of Tandem Repeats on the Scaling of Nucleotide Sequences

    Full text link
    Techniques such as detrended fluctuation analysis (DFA) and its extensions have been widely used to determine the nature of scaling in nucleotide sequences. In this brief communication we show that tandem repeats which are ubiquitous in nucleotide sequences can prevent reliable estimation of possible long-range correlations. Therefore, it is important to investigate the presence of tandem repeats prior to scaling exponent estimation.Comment: 14 Pages, 3 Figure

    Energy Harvesting and Management for Wireless Autonomous Sensors

    No full text
    Wireless autonomous sensors that harvest ambient energy are attractive solutions, due to their convenience and economic benefits. A number of wireless autonomous sensor platforms which consume less than 100?W under duty-cycled operation are available. Energy harvesting technology (including photovoltaics, vibration harvesters, and thermoelectrics) can be used to power autonomous sensors. A developed system is presented that uses a photovoltaic module to efficiently charge a supercapacitor, which in turn provides energy to a microcontroller-based autonomous sensing platform. The embedded software on the node is structured around a framework in which equal precedent is given to each aspect of the sensor node through the inclusion of distinct software stacks for energy management and sensor processing. This promotes structured and modular design, allowing for efficient code reuse and encourages the standardisation of interchangeable protocols

    The nonperturbative propagator and vertex in massless quenched QED_d

    Full text link
    It is well known how multiplicative renormalizability of the fermion propagator, through its Schwinger-Dyson equation, imposes restrictions on the 3-point fermion-boson vertex in massless quenched quantum electrodynamics in 4-dimensions (QED4_4). Moreover, perturbation theory serves as an excellent guide for possible nonperturbative constructions of Green functions. We extend these ideas to arbitrary dimensions dd. The constraint of multiplicative renormalizability of the fermion propagator is generalized to a Landau-Khalatnikov-Fradkin transformation law in dd-dimensions and it naturally leads to a constraint on the fermion-boson vertex. We verify that this constraint is satisfied in perturbation theory at the one loop level in 3-dimensions. Based upon one loop perturbative calculation of the vertex, we find additional restrictions on its possible nonperturbative forms in arbitrary dimensions.Comment: 13 pages, no figures, latex (uses IOP style files

    Massive Dirac fermions and the zero field quantum Hall effect

    Full text link
    Through an explicit calculation for a Lagrangian in quantum electrodynamics in (2+1)-space--time dimensions (QED3_3), making use of the relativistic Kubo formula, we demonstrate that the filling factor accompanying the quantized electrical conductivity for massive Dirac fermions of a single species in two spatial dimensions is a half (in natural units) when time reversal and parity symmetries of the Lagrangian are explicitly broken by the fermion mass term. We then discuss the most general form of the QED3_3 Lagrangian, both for irreducible and reducible representations of the Dirac matrices in the plane, with emphasis on the appearance of a Chern-Simons term. We also identify the value of the filling factor with a zero field quantum Hall effect (QHE).Comment: 15 pages. Accepted in Jour. Phys.

    Synthesis and characterization of silver nanoarticles from extract of Eucalyptus citriodora

    Get PDF
    The primary motivation for the study to develop simple eco-friendly green synthesis of silver nanoparticles using leaf extract of Eucalyptus citriodora as reducing and capping agent. The green synthesis process was quite fast and silver nanoparticles were formed within 0.5 h. The synthesis of the particles was observed by UV-visible spectroscopy by noting increase in absorbance. Characterization of the particles was carried out by X-ray diffraction, FTIR and electron microscopy. The developed nanoparticles demonstrated that E. citriodora is good source of reducing agents. UV-visible absorption spectra of the reaction medium containing silver nanoparticles showed maximum absorbance at 460 nm. FTIR analysis confirmed reduction of Ag+ to Ag0 atom in silver nanoparticles. The XRD pattern revealed the crystalline structure of silver nanoparticles. The SEM analysis showed the size and shape of the nanoparticles. The method being green, fast, easy and cost effective can be recommended for large scale production of AgNPs for their use in food, medicine and materials

    Vibration-powered sensing system for engine condition monitoring

    No full text
    Condition monitoring is becoming an established technique for managing the maintenance of machinery in transport applications. Vibration energy harvesting allows wireless systems to be powered without batteries, but most traditional generators have been designed to operate at fixed frequencies. The variety of engine speeds (and hence vibration frequencies) in transport applications therefore means that these are not usable. This paper describes the application-driven specification, design and implementation of a novel vibration-powered sensing system for condition monitoring of engines. This demonstrates that, through careful holistic design of the entire system, condition monitoring systems can be powered solely from machine vibration, managing their energy resources and transmitting sensed data wirelessly

    Therapeutic Survey of Wild Medicinal Flora of Soan River, Rawalpindi, Pakistan

    Full text link
    Medicinal plants have are worth for human civilizations for treating syndromes. The current study was conducted to document the unexplored medicinal flora of Soan River, Rawalpindi. Data was collected by braun-blanquet approach in which quadrats of 1×1 m2 were laid down, GPS coordinates were recorded, interviewing local people and hakims. Total of 35 species belonging to 20 different families were collected. Medicinal plants were used as carminative, tonic, decoctation, anti-hysteric & anti-amoebic, astringent, diaphoretic, diuretic and emollient etc. People living along Soan River are still utilizing medicinal flora. Anthropogenic activities, lack of awareness and over exploitation of medicinal flora is posing threat to medicinal plant diversity. The present study will highlight the therapeutic uses of medicinal flora of Soan River
    corecore