481 research outputs found

    Removal Of Colour, Cod And Nh3-N From Semi-Aerobic Sanitary Landfill Leachate Using Sulfonic Acid And Quaternary Amine Functional Group Resins

    Get PDF
    The application of ion exchange process in landfill leachate treatment was not well established in literature. Optimized operational conditions and the interaction among process variables for this treatment process were unidentified, leaving a substantial gap in landfill leachate treatment knowledge. In the present study, the treatment of stabilized landfill leachate using resin- cationic, anionic, cationic followed by anionic (cationic-anionic), and anionic followed by cationic (anionic-cationic) were established and documented for the first time

    An approach to failure prediction in a cloud based environment

    Get PDF
    yesFailure in a cloud system is defined as an even that occurs when the delivered service deviates from the correct intended behavior. As the cloud computing systems continue to grow in scale and complexity, there is an urgent need for cloud service providers (CSP) to guarantee a reliable on-demand resource to their customers in the presence of faults thereby fulfilling their service level agreement (SLA). Component failures in cloud systems are very familiar phenomena. However, large cloud service providers’ data centers should be designed to provide a certain level of availability to the business system. Infrastructure-as-a-service (Iaas) cloud delivery model presents computational resources (CPU and memory), storage resources and networking capacity that ensures high availability in the presence of such failures. The data in-production-faults recorded within a 2 years period has been studied and analyzed from the National Energy Research Scientific computing center (NERSC). Using the real-time data collected from the Computer Failure Data Repository (CFDR), this paper presents the performance of two machine learning (ML) algorithms, Linear Regression (LR) Model and Support Vector Machine (SVM) with a Linear Gaussian kernel for predicting hardware failures in a real-time cloud environment to improve system availability. The performance of the two algorithms have been rigorously evaluated using K-folds cross-validation technique. Furthermore, steps and procedure for future studies has been presented. This research will aid computer hardware companies and cloud service providers (CSP) in designing a reliable fault-tolerant system by providing a better device selection, thereby improving system availability and minimizing unscheduled system downtime

    A Circular Economy Framework based on Organic Wastes Upcycling for Biodiesel Production from Hermetia illucens

    Get PDF
    The present waste management practices have adverse environmental impacts at the same time costly. Approximately, 80 % of the Malaysian municipal wastes including organic wastes are usual disposed into landfills. Hence, transformation organic wastes not only providing economic and environmental benefits but has given waste a value. This study focused on synthesis of biodiesel from H. illucens pre-pupae fed with fruit waste and food waste. The objective was to evaluate interactions between the variables including catalyst loading, reaction time versus fatty acid methyl esters (FAME) yield (wt %), temperature and methanol to sample mass ratio. The response surface methodology (RSM) was used to investigate the bioconversion optimization process. Optimal biodiesel yield based on fruit waste achieved was 96.15 % at 51ºC; 8.3:1 methanol: mass ratio; 253 min and 15.1 % catalyst. Furthermore, the optimal yield obtained from the second set of optimization using lipids of pre-pupae derived from food waste was achieved at 94.63 %.  The optimum conditions for reaction temperature was 71°C, with methanol to mass ratio of 6.8:1, at reaction time of 254 min and catalyst loading of 7.0 v/v%. The properties of FAME produced were in accordance with EN 14214 and ASTM 6751 biodiesel standards

    Development of Hybrid Polymeric Polyerthersulfone (PES) Membrane Incorporated with Powdered Activated Carbon (PAC) for Palm Oil Mill Effluent (POME) Treatment

    Get PDF
    The development of water treatment system to produce low cost & high quality effluent has become extremely important nowadays. Since year 1960, membrane technology has transformed from laboratory stage to industrial applications stage. The development of newer membrane modules in recent years helps the membrane industry growth rapidly, but the technology is still not so universal due to membrane fouling issue. Additional of PAC directly into the treatment system has proven to be a promising strategy to reduce membrane fouling and improve efficiency of the system. However, there are also drawbacks caused by excessive PAC within a treatment system. In this study, the potential of integrating the PAC into PES membrane was evaluated and its performance was assessed. The result shows that the PAC integrated membrane has higher permeation rate, which is 231 L/m2.hr compare to the one without PAC integrated membrane, which only has 89 L/m2.hr. In addition, PAC integrated membrane was able to achieve up to 81% and 67% removal rate, compared to the one without PAC integrated which only can remove 10% and 35% of COD and color respectively. Besides, the structural property of the membranes was observed using scanning electron microscopy (SEM). The results showed a trend where the membrane with higher concentration of PAC integrated will have better performance in both pollutant removal ability as well as the membrane fouling control

    A synopsis on the effects of anthropogenic greenhouse gases emissions from power generation and energy consumption

    Get PDF
    Despite the looming difficult energy context in the majority of countries in the world, global change in environmental dignity resulting from power generation and energy consumption scenario is rapidly becoming a globally disturbing phenomenon. Stakeholders and environmental activists alike have been clamouring for adoption of reduction procedures using sustainable means because ignominious environmental practices have associated disastrous consequences. Increasing essential strategies are needed to fortify the pursuit for the reduction in the emissions from power generation and energy consumption. Therefore, this article presents an overview of the effects of anthropogenic energy generation and consumption practices capable of ejecting emissions of greenhouse gases into the atmosphere. It also endeavors to identify some greenhouse gas emission reduction and control measures

    Biofuel production using cultivated algae: technologies, economics, and its environmental impacts

    Get PDF
    The process of looking for alternative energy sources is driven by the increasing demand for energy and environmental contamination caused by using fossil fuels. Recent investigations reported the efficiency of microalgae for biofuel production due to its low cost of production, high speed of growth, and ability to grow in harsh environments. In addition, many microalgae are photosynthetic, consuming CO2 and solar light to grow in biomass and providing a promising bioenergy source. This review presents the recent advances in the application of microalgae for biofuel production. In addition, cultivation and harvesting systems and environmental factors that affect microalgae cultivation for biofuel production have also been discussed. Moreover, lipid extraction and conversion technologies to biofuel are presented. The mixotrophic cultivation strategy is promising as it combines the advantages of heterotrophy and autotrophy. Green harvesting methods such as using bio-coagulants and flocculants are promising technologies to reduce the cost of microalgal biomass production. In the future, more investigations into co-cultivation systems, new green harvesting methods, high lipids extraction methods, and the optimization of lipid extraction and converting processes should be implemented to increase the sustainability of microalgae application for biofuel production

    Thermal based remediation technologies for soil and groundwater: a review

    Get PDF
    Thermal remediation technologies are fast and effective tools for the remediation of contaminated soils and sediments. Nevertheless, the high energy consumption and the effect of high temperature on the soil properties may hinder the wide applications of thermal remediation methods. This review highlights the recent studies focused on thermal remediation. Eight types of thermal remediation processes are discussed, including incineration, thermal desorption, stream enhanced extraction, electrical resistance heating, microwave heating, smoldering, vitrification, and pyrol-ysis. In addition, the combination of thermal remediation with other remediation technologies is presented. Finally, thermal remediation sustainability is evaluated in terms of energy efficiency and their impact on soil properties. The developments of the past decade show that thermal-based technologies are quite effective in terms of contaminant removal but that these technologies are associated with high energy use and costs and can has an adverse impact on soil properties. Nonetheless, it is anticipated that continued research on thermally based technologies can increase their sustainability and expand their applications. Low temperature thermal desorption is a prom-ising remediation technology in terms of land use and energy cost as it has no adverse effect on soil function after treatment and low temperature is required. Overall, selecting the sustainable remediation technology depends on the contaminant properties, soil properties and predicted risk level. © 2022 Desalination Publications. All rights reserved

    Comparison and Optimization of ozone – Based Advanced Oxidation Processes in The Treatment of Stabilized Landfill Leachate

    Get PDF
    -Leachate pollution is one of the main problems in landfilling. Among the most problematic parameters in stabilized leachate are COD, ammonia, and color. The treatment technology that can be used may differ based on the type of leachate produced. Even after treatment, the effluent characteristics are always hard to comply with the discharge standard. Ozonation is one of the chemical processes that can be used in the treatment of landfill leachate. However, its performance when use alone is low; its effectiveness can be improved using advanced oxidants. To date, application of Fenton and persulfate reagents separately to improve ozonation process in one ozone reactor was not well established. The study aimed to evaluate and compare the performance of the three treatment processes, namely ozone, ozone/Fenton and ozone/persulfate in treating stabilized leachate separately at different experimental conditions. The performance of the three methods in the treating stabilized leachate was compared. According to the results, the performance of ozone alone was poor, and utilizing new advanced oxidation material during ozonation of such leachate was required to improve leachate treatability. Ozone/Fenton process is a viable choice for degrading and decolourizing stabilized leachate. Furthermore, ozone/persulfate process has higher performance in ammonia removal as well as it has good removal efficiency of COD and color from stabilized leachate. Suitable data for establishing fully stabilized leachate treatment plant using ozone/Fenton and ozone/persulfate was suggested. The final effluent of ozone/Fenton process complied with the discharge standard for COD and colour

    Bariatric Surgery–Induced Cardiac and Lipidomic Changes in Obesity‐Related Heart Failure with Preserved Ejection Fraction

    Get PDF
    Objective To determine the effects of gastric bypass on myocardial lipid deposition and function and the plasma lipidome in women with obesity and heart failure with preserved ejection fraction (HFpEF). Methods A primary cohort (N = 12) with HFpEF and obesity underwent echocardiography and magnetic resonance spectroscopy both before and 3 months and 6 months after bariatric surgery. Plasma lipidomic analysis was performed before surgery and 3 months after surgery in the primary cohort and were confirmed in a validation cohort (N = 22). Results After surgery‐induced weight loss, Minnesota Living with Heart Failure questionnaire scores, cardiac mass, and liver fat decreased (P < 0.02, P < 0.001, and P = 0.007, respectively); echo‐derived e′ increased (P = 0.03), but cardiac fat was unchanged. Although weight loss was associated with decreases in many plasma ceramide and sphingolipid species, plasma lipid and cardiac function changes did not correlate. Conclusions Surgery‐induced weight loss in women with HFpEF and obesity was associated with improved symptoms, reverse cardiac remodeling, and improved relaxation. Although weight loss was associated with plasma sphingolipidome changes, cardiac function improvement was not associated with lipidomic or myocardial triglyceride changes. The results of this study suggest that gastric bypass ameliorates obesity‐related HFpEF and that cardiac fat deposition and lipidomic changes may not be critical to its pathogenesis
    corecore