9 research outputs found

    Characterization of the protein interaction profile of the human kinase Nek4 and assignment of its functional context

    Get PDF
    Orientador: Jörg KobargTese (doutorado) - Universidade Estadual de Campinas, Instituto de BiologiaResumo: As Neks são proteínas quinases similares a NIMA, proteína que é indispensável para a entrada em mitose de células de Aspergillus nidulans. Em humanos foram identificadas 11 Neks (1-11) e, estudos crescentes vêm demonstrando a participação destas em diversas funções celulares além do controle do ciclo e divisão celular. A Nek4 é um dos maiores membros dessa família e sua relação com a manutenção ciliar e resposta ao DNA danificado já foi demonstrada. Contudo, seus parceiros de interação e substratos são ainda desconhecidos. Para melhor compreender o papel da Nek4 foi realizado um estudo de interatoma para identificar novos processos biológicos com os quais a Nek4 está envolvida. Inicialmente foi identificada uma nova isoforma para a Nek4 e assim, realizou-se o estudo de interatoma para as duas isoformas com a finalidade de comparar o perfil de interação das duas proteínas. As duas isoformas da Nek4 foram expressas em células humanas e após imunoprecipitação seguida de identificação por espectrometria de massas, foram identificadas 474 proteínas que interagem com a isoforma 1 da Nek4, Nek4.1 e 149 para a isoforma 2, Nek4.2. Dentre as proteínas identificadas, 102 interagem com ambas isoformas da Nek4. Nossos resultados confirmam o envolvimento da Nek4 com a resposta ao DNA danificado, função ciliar, estabilização dos microtúbulos e ainda sugerem o envolvimento da Nek4 em funções completamente novas, como processamento de RNAm, resposta ao estresse, controle de qualidade das proteínas e apoptose. Entre os parceiros de interação encontramos importantes proteínas como TRAP-1, Whirlin, PCNA, 14-3-3?, Btf, PARP-1, SRSF1, PAI-RBP1 e KAP-1. As duas isoformas compartilham funções que não foram ainda descritas para os membros da família Nek e a isoforma 1 ainda apresenta funções que já foram descritas para outros membros da família. Aliado ao resultado da imunoprecipitação ainda foram realizadas imunofluorescências que permitiram verificar a localização da Nek4 em diferentes estruturas celulares, como os speckles nucleares e a mitocôndria, corroborando com a função no processamento de RNAm e apoptose. O experimento de imunoprecipitação seguido de identificação por espectrometria de massas também apontou para a possibilidade de autofosforilação e dimerização da Nek4. Além disso, foi possível observar diferenças entre o perfil de interação das duas isoformas da Nek4, sendo que a isoforma 1 interage com proteínas que mantém funções biológicas similares a outras Neks, que a isoforma 2 não apresentaAbstract: Neks are serine-threonine kinases that are similar to NIMA, a protein found in Aspergillus nidulans which is essential for cell division. In humans there are eleven Neks (1-11) which are involved in different biological functions besides the cell cycle control. Nek4 is one of largest members of the Neks family and has been related to the primary cilia formation and in DNA damage response. However, its substrates and interaction partners are still unknown. Thus in an attempt to better understand the role of Nek4 we performed an interactomics study to find new biological processes in which Nek4 is involved. Besides, we described here a novel Nek4 isoform and compared the interactomics profile of these two Nek4 proteins. Isoform 1 and isoform 2 of Nek4 were expressed in human cells and after an immunoprecipitation followed by mass spectrometry, 474 interacting proteins were identified for isoform 1 and 149 for isoform 2 of Nek4. 102 proteins are common interactors between both isoforms. Our results confirm Nek4 involvement in the DNA damage response, cilia maintenance and microtubules stabilization, and raise the possibility of new functional contexts including mRNA processing, apoptosis signaling, stress response, translation and protein quality control. Among the interaction partners, we found important proteins such as TRAP-1, Whirlin, PCNA, 14-3-3?, Btf, PARP-1, SRSF1, PAI-RBP1 and KAP-1. We could observe that both isoforms share functions that are new to the Nek family, and isoform 1 apparently has also maintained functions which have already been established to other Nek family members. From our immunoprecipitation followed by mass spectrometry experiment a possible site for Nek4 autophosphorylation and dimerization was identified. This study provides new insights into Nek4 functions, identifying new interaction partners, localization to new cellular compartment and further suggests an interesting difference between isoform 1 and the novel isoform 2 of Nek4. Nek4 isoform 1 may have maintained similar roles compared to other Neks and these roles are not related to isoform 2DoutoradoBioquimicaDoutora em Biologia Funcional e Molecula

    New Interaction Partners For Nek4.1 And Nek4.2 Isoforms: From The Dna Damage Response To Rna Splicing.

    Get PDF
    Neks are serine-threonine kinases that are similar to NIMA, a protein found in Aspergillus nidulans which is essential for cell division. In humans there are eleven Neks which are involved in different biological functions besides the cell cycle control. Nek4 is one of the largest members of the Nek family and has been related to the primary cilia formation and in DNA damage response. However, its substrates and interaction partners are still unknown. In an attempt to better understand the role of Nek4, we performed an interactomics study to find new biological processes in which Nek4 is involved. We also described a novel Nek4 isoform which lacks a region of 46 amino acids derived from an insertion of an Alu sequence and showed the interactomics profile of these two Nek4 proteins. Isoform 1 and isoform 2 of Nek4 were expressed in human cells and after an immunoprecipitation followed by mass spectrometry, 474 interacting proteins were identified for isoform 1 and 149 for isoform 2 of Nek4. About 68% of isoform 2 potential interactors (102 proteins) are common between the two Nek4 isoforms. Our results reinforce Nek4 involvement in the DNA damage response, cilia maintenance and microtubule stabilization, and raise the possibility of new functional contexts, including apoptosis signaling, stress response, translation, protein quality control and, most intriguingly, RNA splicing. We show for the first time an unexpected difference between both Nek4 isoforms in RNA splicing control. Among the interacting partners, we found important proteins such as ANT3, Whirlin, PCNA, 14-3-3ε, SRSF1, SRSF2, SRPK1 and hNRNPs proteins. This study provides new insights into Nek4 functions, identifying new interaction partners and further suggests an interesting difference between isoform 1 and isoform 2 of this kinase. Nek4 isoform 1 may have similar roles compared to other Neks and these roles are not all preserved in isoform 2. Besides, in some processes, both isoforms showed opposite effects, indicating a possible fine controlled regulation.131

    Acetaminophen absorption and metabolism in an intestine/liver microphysiological system

    No full text
    This study describes the characterization of pharmacokinetic (PK) properties of acetaminophen (APAP) in the Two-Organ-Chip platform (2-OC), a two-chamber device able to cultivate 3D tissues under flow. The APAP intestinal absorption and hepatic metabolism were emulated by human intestine and liver equivalents respectively. The intestinal barrier was produced using Caco-2 and HT-29 cells. The liver spheroids were produced with HepaRG and HHSTeC cells. Cell viability and toxicity were assessed by MTT assay, histology, confocal immunohistochemistry, and multiparametric high content analysis. Gene expression of intestine and liver equivalents were assessed by real-time PCR. Three assemblies of Microphysiological System (MPS) were applied: Intestine 2-OC, Liver 2-OC, and Intestine/Liver 2-OC. The oral administration was emulated by APAP placement over the apical side of the intestinal barrier and the intravenous routes were mimic by the application in the medium. Samples were analyzed by HPLC/UV. APAP 12 mu M or 2 mu M treatment did not induce cytotoxicity for the intestinal barrier (24 h time-point) or for the liver spheroids 12 h time-point), respectively. All preparations showed slower APAP absorption than reported for humans: Peak time (Tmax) = 12 h for Intestine 2-OC and 6 h for Intestine/Liver 2-OC in both static and dynamic conditions, against reported Tmax of 0,33 to 1,4 h after oral administration to humans. APAP metabolism was also slower than reported for humans. The APAP half-life (T-1/(2)) was 12 h in the dynamic Liver 2-OC, against T-1/2 = 2 +/- 0,4 h reported for humans. Samples taken from the Liver 2-OC static preparation did not show APAP concentration decrease. These findings show the MPS capability and potential to emulate human PK properties and highlight the critical role of mechanical stimulus over cell functionality, especially by demonstrating the clear positive influence of the microfluidic flow over the liver equivalents metabolic performance2995976CNPQ - Conselho Nacional de Desenvolvimento Científico e Tecnológiconão temThis work was supported by the National Council for Scientific and Technological Development. We thanks the RENAMA – The Brazilian Network for Alternative Methods and the Brazil Ministry of Health for all support and feasibility of this work. We thanks Maria Beatriz de Carvalho Indolfo for 2-OC MPS schematic representative image desig

    Interactome analysis of the human Cap-specific mRNA (nucleoside-2 '-O-)-methyltransferase 1 (hMTr1) protein

    No full text
    In a previous study, we have shown that the gene promoter of a protein termed KIAA0082 is regulated by interferon and that this protein interacts with the RNA polymerase II. It has been subsequently shown that KIAA0082 is the human cap-specific messenger RNA (mRNA) (nucleoside-2 '-O-)-methyltransferase 1 (hMTr1), which catalyzes methylation of the 2 '-O-ribose of the first nucleotide of capped mRNAs. Pre-mRNAs are cotranscriptionally processed, requiring coordinate interactions or dissociations of hundreds of proteins. hMTr1 potentially binds to the 5 '-end of the whole cellular pre-mRNA pool. Besides, it contains a WW protein interaction domain and thus is expected to be associated with several proteins. In this current study, we determined the composition of complexes isolated by hMTr1 immunoprecipitation from HEK293 cellular extracts. Consistently, a large set of proteins that function in pre-mRNA maturation was identified, including splicing factors, spliceosome-associated proteins, RNA helicases, heterogeneous nuclear ribonucleoproteins (HNRNPs), RNA-binding proteins and proteins involved in mRNA 5 '- and 3 '-end processing, forming an extensive interaction network. In total, 137 proteins were identified in two independent experiments, and some of them were validated by immunoblotting and immunofluorescence. Besides, we further characterized the nature of several hMTr1 interactions, showing that some are RNA dependent, including PARP1, ILF2, XRCC6, eIF2 alpha, and NCL, and others are RNA independent, including FXR1, NPM1, PPM1B, and PRMT5. The data presented here are consistent with the important role played by hMTr1 in pre-mRNA synthesis.120455975611CAPES - Coordenação de Aperfeiçoamento de Pessoal e Nível SuperiorCNPQ - Conselho Nacional de Desenvolvimento Científico e TecnológicoFAPESP – Fundação de Amparo à Pesquisa Do Estado De São Paulosem informação447553/2014-32012/13558-7sem informaçãoPAPES - Programa De Apoio À Pesquisa Estratégica Em Saúde (Fiocru

    On Broken Ne(c)ks and Broken DNA: The Role of Human NEKs in the DNA Damage Response

    No full text
    NIMA-related kinases, or NEKs, are a family of Ser/Thr protein kinases involved in cell cycle and mitosis, centrosome disjunction, primary cilia functions, and DNA damage responses among other biological functional contexts in vertebrate cells. In human cells, there are 11 members, termed NEK1 to 11, and the research has mainly focused on exploring the more predominant roles of NEKs in mitosis regulation and cell cycle. A possible important role of NEKs in DNA damage response (DDR) first emerged for NEK1, but recent studies for most NEKs showed participation in DDR. A detailed analysis of the protein interactions, phosphorylation events, and studies of functional aspects of NEKs from the literature led us to propose a more general role of NEKs in DDR. In this review, we express that NEK1 is an activator of ataxia telangiectasia and Rad3-related (ATR), and its activation results in cell cycle arrest, guaranteeing DNA repair while activating specific repair pathways such as homology repair (HR) and DNA double-strand break (DSB) repair. For NEK2, 6, 8, 9, and 11, we found a role downstream of ATR and ataxia telangiectasia mutated (ATM) that results in cell cycle arrest, but details of possible activated repair pathways are still being investigated. NEK4 shows a connection to the regulation of the nonhomologous end-joining (NHEJ) repair of DNA DSBs, through recruitment of DNA-PK to DNA damage foci. NEK5 interacts with topoisomerase IIβ, and its knockdown results in the accumulation of damaged DNA. NEK7 has a regulatory role in the detection of oxidative damage to telomeric DNA. Finally, NEK10 has recently been shown to phosphorylate p53 at Y327, promoting cell cycle arrest after exposure to DNA damaging agents. In summary, this review highlights important discoveries of the ever-growing involvement of NEK kinases in the DDR pathways. A better understanding of these roles may open new diagnostic possibilities or pharmaceutical interventions regarding the chemo-sensitizing inhibition of NEKs in various forms of cancer and other diseases

    NEK6 Regulates Redox Balance and DNA Damage Response in DU-145 Prostate Cancer Cells

    No full text
    NEK6 is a central kinase in developing castration-resistant prostate cancer (CRPC). However, the pathways regulated by NEK6 in CRPC are still unclear. Cancer cells have high reactive oxygen species (ROS) levels and easily adapt to this circumstance and avoid cell death by increasing antioxidant defenses. We knocked out the NEK6 gene and evaluated the redox state and DNA damage response in DU-145 cells. The knockout of NEK6 decreases the clonogenic capacity, proliferation, cell viability, and mitochondrial activity. Targeting the NEK6 gene increases the level of intracellular ROS; decreases the expression of antioxidant defenses (SOD1, SOD2, and PRDX3); increases JNK phosphorylation, a stress-responsive kinase; and increases DNA damage markers (p-ATM and γH2AX). The exogenous overexpression of NEK6 also increases the expression of these same antioxidant defenses and decreases γH2AX. The depletion of NEK6 also induces cell death by apoptosis and reduces the antiapoptotic Bcl-2 protein. NEK6-lacking cells have more sensitivity to cisplatin. Additionally, NEK6 regulates the nuclear localization of NF-κB2, suggesting NEK6 may regulate NF-κB2 activity. Therefore, NEK6 alters the redox balance, regulates the expression of antioxidant proteins and DNA damage, and its absence induces the death of DU-145 cells. NEK6 inhibition may be a new strategy for CRPC therapy

    NEK1 kinase domain structure and its dynamic protein interactome after exposure to Cisplatin

    No full text
    NEK family kinases are serine/threonine kinases that have been functionally implicated in the regulation of the disjunction of the centrosome, the assembly of the mitotic spindle, the function of the primary cilium and the DNA damage response. NEK1 shows pleiotropic functions and has been found to be mutated in cancer cells, ciliopathies such as the polycystic kidney disease, as well as in the genetic diseases short-rib thoracic dysplasia, Mohr-syndrome and amyotrophic lateral sclerosis. NEK1 is essential for the ionizing radiation DNA damage response and priming of the ATR kinase and of Rad54 through phosphorylation. Here we report on the structure of the kinase domain of human NEK1 in its apo- and ATP-mimetic inhibitor bound forms. The inhibitor bound structure may allow the design of NEK specific chemo-sensitizing agents to act in conjunction with chemo- or radiation therapy of cancer cells. Furthermore, we characterized the dynamic protein interactome of NEK1 after DNA damage challenge with cisplatin. Our data suggest that NEK1 and its interaction partners trigger the DNA damage pathways responsible for correcting DNA crosslinks
    corecore