10 research outputs found

    The importance of inversion disorder in the visible light induced persistent luminescence in Cr3+^{3+} doped AB2_2O4_4 (A = Zn or Mg and B = Ga or Al)

    Full text link
    Cr3+^{3+} doped spinel compounds AB2_2O4_4 with A=Zn, Mg and B=Ga, Al exhibit a long near infrared persistent luminescence when excited with UV or X-rays. In addition, persistent luminescence of ZnGa2_2O4_4 and to a lesser extent MgGa2_2O4_4, can also be induced by visible light excitation via 4^4A2_2 \rightarrow 4^4T2_2 transition of Cr3+^{3+}, which makes these compounds suitable as biomarkers for in vivo optical imaging of small animals. We correlate this peculiar optical property with the presence of antisite defects, which are present in ZnGa2_2O4_4 and MgGa2_2O4_4. By using X-ray absorption fine structure (XAFS) spectroscopy, associated with electron paramagnetic resonance (EPR) and optical emission spectroscopy, it is shown that an increase in antisite defects concentration results in a decrease in the Cr-O bond length and the octahedral crystal field energy. A part of the defects are in the close environment of Cr3+^{3+} ions, as shown by the increasing strain broadening of EPR and XAFS peaks observed upon increasing antisite disorder. It appears that ZnAl2_2O4_4, which exhibits the largest crystal field splitting of Cr3+^{3+} and the smallest antisite disorder, does not show considerable persistent luminescence upon visible light excitation as compared to ZnGa2_2O4_4 and MgGa2_2O4_4. These results highlight the importance of Cr3+^{3+} ions with neighboring antisite defects in the mechanism of persistent luminescence exhibited by Cr3+^{3+} doped AB2_2O4_4 spinel compounds.Comment: 10 pages + supplementary (available on request

    Storage of Visible Light for Long-Lasting Phosphorescence in Chromium-Doped Zinc Gallate

    No full text
    ZnGa<sub>2</sub>O<sub>4</sub>:Cr<sup>3+</sup> presents near-infrared long-lasting phosphorescence (LLP) suitable for in vivo bioimaging. It is a bright LLP material showing a main thermally stimulated luminescence (TSL) peak around 318 K. The TSL peak can be excited virtually by all visible wavelengths from 1.8 eV (680 nm) via d–d excitation of Cr<sup>3+</sup> to above ZnGa<sub>2</sub>O<sub>4</sub> band gap (4.5 eV–275 nm). The mechanism of LLP induced by visible light excitation is entirely localized around Cr<sub>N2</sub> ion that is a Cr<sup>3+</sup> ion with an antisite defect as first cationic neighbor. The charging process involves trapping of an electron–hole pair at antisite defects of opposite charges, one of them being first cationic neighbor to Cr<sub>N2</sub>. We propose that the driving force for charge separation in the excited states of chromium is the local electric field created by the neighboring pair of antisite defects. The cluster of defects formed by Cr<sub>N2</sub> ion and the complementary antisite defects is therefore able to store visible light. This unique property enables repeated excitation of LLP through living tissues in ZnGa<sub>2</sub>O<sub>4</sub>:Cr<sup>3+</sup> biomarkers used for in vivo imaging. Upon excitation of ZnGa<sub>2</sub>O<sub>4</sub>:Cr<sup>3+</sup> above 3.1 eV, LLP efficiency is amplified by band-assistance because of the position of Cr<sup>3+4</sup>T<sub>1</sub> (<sup>4</sup>F) state inside ZnGa<sub>2</sub>O<sub>4</sub> conduction band. Additional TSL peaks emitted by all types of Cr<sup>3+</sup> including defect-free Cr<sub>R</sub> then appear at low temperature, showing that shallower trapping at defects located far away from Cr<sup>3+</sup> occurs through band excitation
    corecore