10 research outputs found

    Review article of the current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change

    Full text link
    The aim of this paper is to provide the community with a comprehensive overview of the studies of glaciers in the tropical Andes conducted in recent decades leading to the current status of the glaciers in the context of climate change. In terms of changes in surface area and length, we show that the glacier retreat in the tropical Andes over the last three decades is unprecedented since the maximum extension of the LIA (mid 17th–early 18th century). In terms of changes in mass balance, although there have been some sporadic gains on several glaciers, we show that the trend has been quite negative over the past 50 yr, with a mean mass balance deficit for glaciers in the tropical Andes that is slightly more negative than the computed global average. A break point in the trend appeared in the late 1970s with mean annual mass balance per year decreasing from −0.2m w.e. in the period 1964–1975 to −0.76m w.e. in the period 1976–2010. In addition, even if glaciers are currently retreating everywhere in the tropical Andes, it should be noted that as a percentage, this is much more pronounced on small glaciers at low altitudes that do not have a permanent accumulation zone, and which could disappear in the coming years/decades. Monthly mass balance measurements performed in Bolivia, Ecuador and Colombia showed that variability of the surface temperature of the Pacific Ocean is the main factor governing variability of the mass balance variability at the interannual to decadal time scale. Precipitation did not display a significant trend in the tropical Andes in the 20th century, and consequently cannot explain the glacier recession. On the other hand, temperature increased at a significant rate of 0.10◦Cdecade−1 in the last 70 yr. The higher frequency of El Nin ̃o events and changes in its spatial and temporal occurrence since the late 1970s together with a warming troposphere over the tropical Andes may thus explain much of the recent dramatic shrinkage of glaciers in this part of the world

    Producción de cebada (Hordeum vulgare L.) con urea normal y polimerizada en Pintag, Quito, Ecuador.

    No full text
    El objetivo de esta investigación fue evaluar la respuesta de la producción de cebada a la fertilización nitrogenada (FN) y el impacto de esta en el contenido proteico del grano y la disponibilidad de nutrientes del suelo. El estudio se llevó a cabo en dos sitios de la Hacienda Valencia, en la localidad de Pintag, Quito, Ecuador, entre marzo 2014 y febrero 2015. Se utilizó la variedad INIAP Cañicapa 2003, y la FN se efectuó con urea normal y polimerizada (urea + tiofosfato de N-n- butiltriamida). Se empleó un diseño experimental de bloques completos al azar con cuatro repeticiones en un arreglo de parcelas divididas [la urea (normal o polimerizada) fue la parcela principal y la FN (0, 30, 60, 90, 120, y 150 kg N/ha) la sub-parcela]. Se utilizó 110 kg/ha de semilla; 50% de la FN se aplicó tres semanas después de la siembra (al voleo) y 50% a las ocho semanas. El tipo de urea no afectó la producción (p>0,10), aunque el promedio fue diferente entre los dos sitios (4,33 y 2,08 t/ha para los sitios 1 y 2, respectivamente). El exceso de lluvia pudo limitar el efecto del tipo de urea. En promedio se obtuvo una respuesta cuadrática a la FN, con una dosis óptima de N (DON) de 90 kg N/ha y una producción de 3,41 t/ha. Esta DON fue similar a las dosis de N recomendadas para cebada en Ecuador. La FN aumentó el contenido de proteína en el grano hasta 14,50% (p<0,01) y acidi có el suelo, porque la nitrificación de urea produce H+.

    Effect of dietary phosphorus and vitamin D3 on phosphorus levels in effluent from the experimental culture of rainbow trout (Oncorhynchus mykiss)

    No full text
    Excessive phosphorus (P) levels in aquaculture effluents violate federally mandated limits and pose a serious threat to the freshwater environment. In rainbow trout culture, effluent P probably originates as fecal and metabolic waste product because assimilation of dietary P is relatively low. We therefore decreased dietary P and increased dietary vitamin D3 levels, methods that enhance P assimilation in mammals, in purified and semi-purified trout diets, then monitored effluent P. Soluble effluent P reached a peak right after feeding and returned to baseline levels in between feeding times. The peak and average concentrations of soluble P in the effluent were mainly influenced by dietary P. Average P in fecal dry matter also decreased with dietary P. Neither dietary P nor vitamin D3 under the conditions of the experiment had significant effects on whole body P content but P deposition (as a percentage of P intake) decreased with increased dietary P. The dietary combination of low P and high vitamin D3 decreased soluble and fecal P levels in the effluent indicating a strategy whereby effluent P concentrations can be reduced by regulation of P metabolism

    A Nonlinear Statistical Model for Extracting a Climatic Signal From Glacier Mass Balance Measurements

    No full text
    International audienceUnderstanding changes in glacier mass balances is essential for investigating climate changes. However, glacier‐wide mass balances determined from geodetic observations do not provide a relevant climatic signal as they depend on the dynamic response of the glaciers. In situ point mass balance measurements provide a direct signal but show a strong spatial variability that is difficult to assess from heterogeneous in situ measurements over several decades. To address this issue, we propose a nonlinear statistical model that takes into account the spatial and temporal changes in point mass balances. To test this model, we selected four glaciers in different climatic regimes (France, Bolivia, India, and Norway) for which detailed point annual mass balance measurements were available over a large elevation range. The model extracted a robust and consistent signal for each glacier. We obtained explained variances of 87.5, 90.2, 91.3, and 75.5% on Argentière, Zongo, Chhota Shigri, and Nigardsbreen glaciers, respectively. The standard deviations of the model residuals are close to measurement uncertainties. The model can also be used to detect measurement errors. Combined with geodetic data, this method can provide a consistent glacier‐wide annual mass balance series from a heterogeneous network. This model, available to the whole community, can be used to assess the impact of climate change in different regions of the world from long‐term mass balance series

    Review article of the current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change

    No full text
    The aim of this paper is to provide the community with a comprehensive overview of the studies of glaciers in the tropical Andes conducted in recent decades leading to the current status of the glaciers in the context of climate change. In terms of changes in surface area and length, we show that the glacier retreat in the tropical Andes over the last three decades is unprecedented since the maximum extension of the LIA (mid 17th–early 18th century). In terms of changes in mass balance, although there have been some sporadic gains on several glaciers, we show that the trend has been quite negative over the past 50 yr, with a mean mass balance deficit for glaciers in the tropical Andes that is slightly more negative than the computed global average. A break point in the trend appeared in the late 1970s with mean annual mass balance per year decreasing from −0.2m w.e. in the period 1964–1975 to −0.76m w.e. in the period 1976–2010. In addition, even if glaciers are currently retreating everywhere in the tropical Andes, it should be noted that as a percentage, this is much more pronounced on small glaciers at low altitudes that do not have a permanent accumulation zone, and which could disappear in the coming years/decades. Monthly mass balance measurements performed in Bolivia, Ecuador and Colombia showed that variability of the surface temperature of the Pacific Ocean is the main factor governing variability of the mass balance variability at the interannual to decadal time scale. Precipitation did not display a significant trend in the tropical Andes in the 20th century, and consequently cannot explain the glacier recession. On the other hand, temperature increased at a significant rate of 0.10◦Cdecade−1 in the last 70 yr. The higher frequency of El Nin ̃o events and changes in its spatial and temporal occurrence since the late 1970s together with a warming troposphere over the tropical Andes may thus explain much of the recent dramatic shrinkage of glaciers in this part of the world

    Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change

    Get PDF
    The aim of this paper is to provide the community with a comprehensive overview of the studies of glaciers in the tropical Andes conducted in recent decades leading to the current status of the glaciers in the context of climate change. In terms of changes in surface area and length, we show that the glacier retreat in the tropical Andes over the last three decades is unprecedented since the maximum extension of the Little Ice Age (LIA, mid-17th–early 18th century). In terms of changes in mass balance, although there have been some sporadic gains on several glaciers, we show that the trend has been quite negative over the past 50 yr, with a mean mass balance deficit for glaciers in the tropical Andes that is slightly more negative than the one computed on a global scale. A break point in the trend appeared in the late 1970s with mean annual mass balance per year decreasing from −0.2 m w.e. in the period 1964–1975 to −0.76 m w.e. in the period 1976–2010. In addition, even if glaciers are currently retreating everywhere in the tropical Andes, it should be noted that this is much more pronounced on small glaciers at low altitudes that do not have a permanent accumulation zone, and which could disappear in the coming years/decades. Monthly mass balance measurements performed in Bolivia, Ecuador and Colombia show that variability of the surface temperature of the Pacific Ocean is the main factor governing variability of the mass balance at the decadal timescale. Precipitation did not display a significant trend in the tropical Andes in the 20th century, and consequently cannot explain the glacier recession. On the other hand, temperature increased at a significant rate of 0.10 °C decade&lt;sup&gt;−1&lt;/sup&gt; in the last 70 yr. The higher frequency of El Niño events and changes in its spatial and temporal occurrence since the late 1970s together with a warming troposphere over the tropical Andes may thus explain much of the recent dramatic shrinkage of glaciers in this part of the world

    Updated and annotated checklist of recent mammals from Brazil

    No full text
    corecore