5,016 research outputs found

    Isospin breaking in the nucleon mass and the sensitivity of β decays to new physics

    Get PDF
    We discuss the consequences of the approximate conservation of the vector and axial currents for the hadronic matrix elements appearing in β decay if nonstandard interactions are present. In particular, the isovector (pseudo)scalar charge gS(P) of the nucleon can be related to the difference (sum) of the nucleon masses in the absence of electromagnetic effects. Using recent determinations of these quantities from phenomenological and lattice QCD studies we obtain the accurate values gS=1.02(11) and gP=349(9) in the modified minimal subtraction scheme at μ=2  GeV. The consequences for searches of nonstandard scalar interactions in nuclear β decays are studied, finding for the corresponding Wilson coefficient εS=0.0012(24) at 90% C.L., which is significantly more stringent than current LHC bounds and previous low-energy bounds using less precise gS values. We argue that our results could be rapidly improved with updated computations and the direct calculation of certain ratios in lattice QCD. Finally, we discuss the pion-pole enhancement of gP, which makes β decays much more sensitive to nonstandard pseudoscalar interactions than previously thought

    Fast and Exact Spin-s Spherical Harmonic Transforms

    Full text link
    We demonstrate a fast spin-s spherical harmonic transform algorithm, which is flexible and exact for band-limited functions. In contrast to previous work, where spin transforms are computed independently, our algorithm permits the computation of several distinct spin transforms simultaneously. Specifically, only one set of special functions is computed for transforms of quantities with any spin, namely the Wigner d-matrices evaluated at {\pi}/2, which may be computed with efficient recursions. For any spin the computation scales as O(L^3) where L is the band-limit of the function. Our publicly available numerical implementation permits very high accuracy at modest computational cost. We discuss applications to the Cosmic Microwave Background (CMB) and gravitational lensing.Comment: 22 pages, preprint format, 5 figure

    Optically tuned and large-grained bromine doped CH3NH3PbI3 perovskite thin films via aerosol-assisted chemical vapour deposition

    Get PDF
    Herein, doping of methylammonium lead iodide perovskite thin films with bromine ions is successfully performed for the first time using the aerosol-assisted chemical vapour deposition process. Depending on the doping levels, photoluminescence spectra are shifted relative to their bandgap values. Detailed analysis of scanning electron microscope images showed that increasing the bromine levels linearly increased the grain sizes. The unchanged amount of detected lead provided evidence for the controlled processing conditions. Both bulk and surface compositional techniques confirmed the deposition of marginally iodine rich perovskite thin films

    Reflection coefficient for superresonant scattering

    Full text link
    We investigate superresonant scattering of acoustic disturbances from a rotating acoustic black hole in the low frequency range. We derive an expression for the reflection coefficient, exhibiting its frequency dependence in this regime.Comment: 7 page

    QCD thermodynamics with nonzero chemical potential at Nt=6N_t=6 and effects from heavy quarks

    Full text link
    We extend our work on QCD thermodynamics with 2+1 quark flavors at nonzero chemical potential to finer lattices with Nt=6N_t=6. We study the equation of state and other thermodynamic quantities, such as quark number densities and susceptibilities, and compare them with our previous results at Nt=4N_t=4. We also calculate the effects of the addition of the charm and bottom quarks on the equation of state at zero and nonzero chemical potential. These effects are important for cosmological studies of the early Universe.Comment: 27 pages, 17 figures. Some small text and figure change

    Coexisting pseudogap, charge transfer gap, and Mott gap energy scales in the resonant inelastic x-ray scattering spectra of electron-doped cuprates

    Full text link
    We present a computation of Cu K-edge resonant inelastic x-ray scattering (RIXS) spectra for electron-doped cuprates which includes coupling to bosonic fluctuations. Comparison with experiment over a wide range of energy and momentum transfers allows us to identify the signatures of three key normal-state energy scales: the pseudogap, charge transfer gap, and Mott gap. The calculations involve a three band Hubbard Hamiltonian based on Cu dx2y2d_{x^2-y^2} and O pxp_x, pyp_y orbitals, with a self-energy correction which arises due to spin and charge fluctuations. Our theory reproduces characteristic features e.g., gap collapse, large spectral weight broadening, and spectral weight transfer as a function of doping, as seen in experiments.Comment: 5 pages, 4 figure
    corecore