87 research outputs found
Primitive Sca-1 Positive Bone Marrow HSC in Mouse Model of Aplastic Anemia: A Comparative Study through Flowcytometric Analysis and Scanning Electron Microscopy
Self-renewing Hematopoietic Stem Cells (HSCs) are responsible for reconstitution of all blood cell lineages. Sca-1 is the “stem cell antigen” marker used to identify the primitive murine HSC population, the expression of which decreases upon differentiation to other mature cell types. Sca-1+ HSCs maintain the bone marrow stem cell pool throughout the life. Aplastic anemia is a disease considered to involve primary stem cell deficiency and is characterized by severe pancytopenia and a decline in healthy blood cell generation system. Studies conducted in our laboratory revealed that the primitive Sca-1+ BM-HSCs (bone marrow hematopoietic stem cell) are significantly affected in experimental Aplastic animals pretreated with chemotherapeutic drugs (Busulfan and Cyclophosphamide) and there is increased Caspase-3 activity with consecutive high Annexin-V positivity leading to premature apoptosis in the bone marrow hematopoietic stem cell population in Aplastic condition. The Sca-1bright, that is, “more primitive” BM-HSC population was more affected than the “less primitive” BM-HSC Sca-1dim population. The decreased cell population and the receptor expression were directly associated with an empty and deranged marrow microenvironment, which is evident from scanning electron microscopy (SEM). The above experimental evidences hint toward the manipulation of receptor expression for the benefit of cytotherapy by primitive stem cell population in Aplastic anemia cases
Alteration in Marrow Stromal Microenvironment and Apoptosis Mechanisms Involved in Aplastic Anemia: An Animal Model to Study the Possible Disease Pathology
Aplastic anemia (AA) is a heterogeneous disorder of bone marrow failure syndrome. Suggested mechanisms include a primary stem cell deficiency or defect, a secondary stem cell defect due to abnormal regulation between cell death and differentiation, or a deficient microenvironment. In this study, we have tried to investigate the alterations in hematopoietic microenvironment and underlying mechanisms involved in such alterations in an animal model of drug induced AA. We presented the results of studying long term marrow culture, marrow ultra-structure, marrow adherent and hematopoietic progenitor cell colony formation, flowcytometric analysis of marrow stem and stromal progenitor populations and apoptosis mechanism involved in aplastic anemia. The AA marrow showed impairment in cellular proliferation and maturation and failed to generate a functional stromal microenvironment even after 19 days of culture. Ultra-structural analysis showed a degenerated and deformed marrow cellular association in AA. Colony forming units (CFUs) were also severely reduced in AA. Significantly decreased marrow stem and stromal progenitor population with subsequently increased expression levels of both the extracellular and intracellular apoptosis inducer markers in the AA marrow cells essentially pointed towards the defective hematopoiesis; moreover, a deficient and apoptotic microenvironment and the microenvironmental components might have played the important role in the possible pathogenesis of AA
Primary vaginal Ewing's sarcoma or primitive neuroectodermal tumor in a 17-year-old woman: a case report
<p>Abstract</p> <p>Introduction</p> <p>Primary Ewing's sarcoma or primitive neuroectodermal tumor of the genital tract of women is uncommon. Rarer still is its occurrence in the vagina, with only five cases described so far. Out of these, only one case was confirmed using molecular analysis.</p> <p>Case presentation</p> <p>We present an extremely rare case of Ewing's sarcoma or primitive neuroectodermal tumor in a 17-year-old Indian girl. She presented with a vaginal mass that was initially diagnosed as a malignant round cell tumor. Immunohistochemistry showed diffuse positivity for vimentin, membranous positivity for MIC2, and positivity for BCL2 and FLI-1. On the other hand, she was negative for cytokeratin, epithelial membrane antigen, desmin, Myo D-1, myogenin and smooth muscle actin. A diagnosis of primitive neuroectodermal tumor was thus offered. Furthermore, a molecular analysis of our patient using reverse transcription-polymerase chain reaction technique showed positivity for t(11; 22) (q24; q12) (EWSR1-FLI1), thus confirming the diagnosis of a Ewing's sarcoma/primitive neuroectodermal tumor. Our patient was offered chemotherapy on Institutional protocol EFT 2001.</p> <p>Conclusion</p> <p>This is a rare case of primary vaginal Ewing's sarcoma or primitive neuroectodermal tumor, which was confirmed with molecular analysis, in the youngest patient known so far. This study reinforces the value of integrating morphological features with membranous MIC2 positivity, along with application of molecular techniques in objective identification of an Ewing's sarcoma or primitive neuroectodermal tumor at uncommon sites.</p
Immune Differentiation Regulator p100 Tunes NF-κB Responses to TNF
Tumor necrosis factor (TNF) is a pleiotropic cytokine whose primary physiological function involves coordinating inflammatory and adaptive immune responses. However, uncontrolled TNF signaling causes aberrant inflammation and has been implicated in several human ailments. Therefore, an understanding of the molecular mechanisms underlying dynamical and gene controls of TNF signaling bear significance for human health. As such, TNF engages the canonical nuclear factor kappa B (NF-κB) pathway to activate RelA:p50 heterodimers, which induce expression of specific immune response genes. Brief and chronic TNF stimulation produces transient and long-lasting NF-κB activities, respectively. Negative feedback regulators of the canonical pathway, including IκBα, are thought to ensure transient RelA:p50 responses to short-lived TNF signals. The non-canonical NF-κB pathway mediates RelB activity during immune differentiation involving p100. We uncovered an unexpected role of p100 in TNF signaling. Brief TNF stimulation of p100-deficient cells triggered an additional late NF-κB activity consisting of RelB:p50 heterodimers, which modified the TNF-induced gene-expression program. In p100-deficient cells subjected to brief TNF stimulation, RelB:p50 not only sustained the expression of a subset of RelA-target immune response genes but also activated additional genes that were not normally induced by TNF in WT mouse embryonic fibroblasts (MEFs) and were related to immune differentiation and metabolic processes. Despite this RelB-mediated distinct gene control, however, RelA and RelB bound to mostly overlapping chromatin sites in p100-deficient cells. Repeated TNF pulses strengthened this RelB:p50 activity, which was supported by NF-κB-driven RelB synthesis. Finally, brief TNF stimulation elicited late-acting expressions of NF-κB target pro-survival genes in p100-deficient myeloma cells. In sum, our study suggests that the immune-differentiation regulator p100 enforces specificity of TNF signaling and that varied p100 levels may provide for modifying TNF responses in diverse physiological and pathological settings
Of cattle, sand flies and men : a systematic review of risk factor analyses for South Asian visceral leishmaniasis and implications for elimination
Background: Studies performed over the past decade have identified fairly consistent epidemiological patterns of risk
factors for visceral leishmaniasis (VL) in the Indian subcontinent.
Methods and Principal Findings: To inform the current regional VL elimination effort and identify key gaps in knowledge,
we performed a systematic review of the literature, with a special emphasis on data regarding the role of cattle because
primary risk factor studies have yielded apparently contradictory results. Because humans form the sole infection reservoir,
clustering of kala-azar cases is a prominent epidemiological feature, both at the household level and on a larger scale.
Subclinical infection also tends to show clustering around kala-azar cases. Within villages, areas become saturated over a
period of several years; kala-azar incidence then decreases while neighboring areas see increases. More recently, post kalaazar
dermal leishmaniasis (PKDL) cases have followed kala-azar peaks. Mud walls, palpable dampness in houses, and peridomestic
vegetation may increase infection risk through enhanced density and prolonged survival of the sand fly vector.
Bed net use, sleeping on a cot and indoor residual spraying are generally associated with decreased risk. Poor micronutrient
status increases the risk of progression to kala-azar. The presence of cattle is associated with increased risk in some studies
and decreased risk in others, reflecting the complexity of the effect of bovines on sand fly abundance, aggregation, feeding
behavior and leishmanial infection rates. Poverty is an overarching theme, interacting with individual risk factors on multiple
levels.
Conclusions: Carefully designed demonstration projects, taking into account the complex web of interconnected risk
factors, are needed to provide direct proof of principle for elimination and to identify the most effective maintenance
activities to prevent a rapid resurgence when interventions are scaled back. More effective, short-course treatment
regimens for PKDL are urgently needed to enable the elimination initiative to succeed
NOX1-dependent redox signaling potentiates colonic stem cell proliferation to adapt to the intestinal microbiota by linking EGFR and TLR activation
The colon epithelium is a primary point of interaction with the microbiome and is regenerated by a few rapidly cycling colonic stem cells (CSCs). CSC self-renewal and proliferation are regulated by growth factors and the presence of bacteria. However, the molecular link connecting the diverse inputs that maintain CSC homeostasis remains largely unknown. We report that CSC proliferation is mediated by redox-dependent activation of epidermal growth factor receptor (EGFR) signaling via NADPH oxidase 1 (NOX1). NOX1 expression is CSC specific and is restricted to proliferative CSCs. In the absence of NOX1, CSCs fail to generate ROS and have a reduced proliferation rate. NOX1 expression is regulated by Toll-like receptor activation in response to the microbiota and serves to link CSC proliferation with the presence of bacterial components in the crypt. The TLR-NOX1-EGFR axis is therefore a critical redox signaling node in CSCs facilitating the quiescent-proliferation transition and responds to the microbiome to maintain colon homeostasis
Carriage and within-host diversity of mcr-1.1-harboring Escherichia coli from pregnant mothers: inter- and intra-mother transmission dynamics of mcr-1.1
Exchange of antimicrobial resistance genes via mobile genetic elements occur in the gut which can be transferred from mother to neonate during birth. This study is the first to analyze transmissible colistin resistance gene, mcr, in pregnant mothers and neonates. Samples were collected from pregnant mothers (rectal) and septicaemic neonates (rectal & blood) and analyzed for presence of mcr, its transmissibility, genome diversity, and exchange of mcr between isolates within an individualand across different individuals (not necessarily mother-baby pairs). mcr-1.1 was detected in rectal samples of pregnant mothers (n=10, 0.9%), but not in neonates. All mcr-positive mothers gave birth to healthy neonates from whom rectal specimen were not collected. Hence, transmission of mcr between these mother-neonate pairs could not be studied. mcr-1.1 was noted only in Escherichia coli (phylogroup A & B1), and carried few resistance and virulence genes. Isolates belonged to diverse sequence types (n=11) with two novel STs (ST12452, ST12455). mcr-1.1 was borne on conjugative IncHI2 bracketed between ISApl1 on Tn6630, and the plasmids exhibited similarities in sequences across the study isolates. Phylogenetic comparison showed that study isolates were related to mcr-positive isolates of animal origin from Southeast Asian countries. Spread of mcr-1.1 within this study occurred either via similar mcr-positive clones or similar mcr-bearing plasmids in mothers. Though this study could not build evidence for mother-baby transmission, but presence of such genes in the maternal specimen may enhance the chances of transmission to neonates
Mitochondrial physiology
As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
- …