63 research outputs found

    Surveillance for Waterborne-Disease Outbreaks--United States, 1997-1998.

    Get PDF
    PROBLEM/CONDITION: Since 1971, CDC and the U.S. Environmental Protection Agency (EPA) have maintained a collaborative surveillance system for collecting and periodically reporting data relating to occurrences and causes of waterborne-disease outbreaks (WBDOs). REPORTING PERIOD COVERED: This summary includes data from January 1997 through December 1998 and a previously unreported outbreak in 1996. DESCRIPTION OF THE SYSTEM: The surveillance system includes data regarding outbreaks associated with drinking water and recreational water. State, territorial, and local public health departments are primarily responsible for detecting and investigating WBDOs and voluntarily reporting them to CDC on a standard form. RESULTS: During 1997-1998, a total of 13 states reported 17 outbreaks associated with drinking water. These outbreaks caused an estimated 2,038 persons to become ill. No deaths were reported. The microbe or chemical that caused the outbreak was identified for 12 (70.6%) of the 17 outbreaks; 15 (88.2%) were linked to groundwater sources. Thirty-two outbreaks from 18 states were attributed to recreational water exposure and affected an estimated 2,128 persons. Eighteen (56.3%) of the 32 were outbreaks of gastroenteritis, and 4 (12.5%) were single cases of primary amebic meningoencephalitis caused by Naegleria fowleri, all of which were fatal. The etiologic agent was identified for 29 (90.6%) of the 32 outbreaks, with one death associated with an Escherichia coli O157:H7 outbreak. Ten (55.6%) of the 18 gastroenteritis outbreaks were associated with treated pools or ornamental fountains. Of the eight outbreaks of dermatitis, seven (87.5%) were associated with hot tubs, pools, or springs. INTERPRETATION: Drinking water outbreaks associated with surface water decreased from 31.8% during 1995-1996 to 11.8% during 1997-1998. This reduction could be caused by efforts by the drinking water industry (e.g., Partnership for Safe Water), efforts by public health officials to improve drinking water quality, and improved water treatment after the implementation of EPA\u27s Surface Water Treatment Rule. In contrast, the proportion of outbreaks associated with systems supplied by a groundwater source increased from 59.1% (i.e., 13) during 1995-1996 to 88.2% (i.e., 15) during 1997-1998. Outbreaks caused by parasites increased for both drinking and recreational water. All outbreaks of gastroenteritis attributed to parasites in recreational water were caused by Cryptosporidium, 90% occurred in treated water venues (e.g., swimming pools and decorative fountains), and fecal accidents were usually suspected. The data in this surveillance summary probably underestimate the true incidence of WBDOs because not all WBDOs are recognized, investigated, and reported to CDC or EPA. ACTIONS TAKEN: To estimate the national prevalence of waterborne disease associated with drinking water, CDC and EPA are conducting a series of epidemiologic studies to better quantify the level of waterborne disease associated with drinking water in nonoutbreak conditions. The Information Collection Rule implemented by EPA in collaboration with the drinking water industry helped quantifythe level of pathogens in surface water. Efforts by CDC to address recreational water outbreaks have included meetings with the recreational water industry, focus groups to educate parents on prevention of waterborne disease transmission in recreational water settings, and publications with guidelines for parents and pool operators

    Body Temperature Monitoring and SARS Fever Hotline, Taiwan

    Get PDF
    In Taiwan, a temperature-monitoring campaign and hotline for severe acute respiratory syndrome (SARS) fever were implemented in June 2003. Among 1,966 calls, fever was recorded in 19% (n = 378); 18 persons at high risk for SARS were identified. In a cross-sectional telephone survey, 95% (n = 1,060) of households knew about the campaign and 7 households reported fever

    Novel homozygous missense mutation in GAN associated with Charcot-Marie-Tooth disease type 2 in a large consanguineous family from Israel.

    Get PDF
    BACKGROUND: CMT-2 is a clinically and genetically heterogeneous group of peripheral axonal neuropathies characterized by slowly progressive weakness and atrophy of distal limb muscles resulting from length-dependent motor and sensory neurodegeneration. Classical giant axonal neuropathy (GAN) is an autosomal recessively inherited progressive neurodegenerative disorder of the peripheral and central nervous systems, typically diagnosed in early childhood and resulting in death by the end of the third decade. Distinctive phenotypic features are the presence of "kinky" hair and long eyelashes. The genetic basis of the disease has been well established, with over 40 associated mutations identified in the gene GAN, encoding the BTB-KELCH protein gigaxonin, involved in intermediate filament regulation. METHODS: An Illumina Human CytoSNP-12 array followed by whole exome sequence analysis was used to identify the disease associated gene mutation in a large consanguineous family diagnosed with Charcot-Marie-Tooth disease type 2 (CMT-2) from which all but one affected member had straight hair. RESULTS: Here we report the identification of a novel GAN missense mutation underlying the CMT-2 phenotype observed in this family. Although milder forms of GAN, with and without the presence of kinky hair have been reported previously, a phenotype distinct from that was investigated in this study. All family members lacked common features of GAN, including ataxia, nystagmus, intellectual disability, seizures, and central nervous system involvement. CONCLUSIONS: Our findings broaden the spectrum of phenotypes associated with GAN mutations and emphasize a need to proceed with caution when providing families with diagnostic or prognostic information based on either clinical or genetic findings alone

    TXS 0506+056 with Updated IceCube Data

    Get PDF
    Past results from the IceCube Collaboration have suggested that the blazar TXS 0506+056 is a potential source of astrophysical neutrinos. However, in the years since there have been numerous updates to event processing and reconstruction, as well as improvements to the statistical methods used to search for astrophysical neutrino sources. These improvements in combination with additional years of data have resulted in the identification of NGC 1068 as a second neutrino source candidate. This talk will re-examine time-dependent neutrino emission from TXS 0506+056 using the most recent northern-sky data sample that was used in the analysis of NGC 1068. The results of using this updated data sample to obtain a significance and flux fit for the 2014 TXS 0506+056 "untriggered" neutrino flare are reported

    Conditional normalizing flows for IceCube event reconstruction

    Get PDF

    Galactic Core-Collapse Supernovae at IceCube: “Fire Drill” Data Challenges and follow-up

    Get PDF
    The next Galactic core-collapse supernova (CCSN) presents a once-in-a-lifetime opportunity to make astrophysical measurements using neutrinos, gravitational waves, and electromagnetic radiation. CCSNe local to the Milky Way are extremely rare, so it is paramount that detectors are prepared to observe the signal when it arrives. The IceCube Neutrino Observatory, a gigaton water Cherenkov detector below the South Pole, is sensitive to the burst of neutrinos released by a Galactic CCSN at a level >10σ. This burst of neutrinos precedes optical emission by hours to days, enabling neutrinos to serve as an early warning for follow-up observation. IceCube\u27s detection capabilities make it a cornerstone of the global network of neutrino detectors monitoring for Galactic CCSNe, the SuperNova Early Warning System (SNEWS 2.0). In this contribution, we describe IceCube\u27s sensitivity to Galactic CCSNe and strategies for operational readiness, including "fire drill" data challenges. We also discuss coordination with SNEWS 2.0

    All-Energy Search for Solar Atmospheric Neutrinos with IceCube

    Get PDF
    The interaction of cosmic rays with the solar atmosphere generates a secondary flux of mesons that decay into photons and neutrinos – the so-called solar atmospheric flux. Although the gamma-ray component of this flux has been observed in Fermi-LAT and HAWC Observatory data, the neutrino component remains undetected. The energy distribution of those neutrinos follows a soft spectrum that extends from the GeV to the multi-TeV range, making large Cherenkov neutrino telescopes a suitable for probing this flux. In this contribution, we will discuss current progress of a search for the solar neutrino flux by the IceCube Neutrino Observatory using all available data since 2011. Compared to the previous analysis which considered only high-energy muon neutrino tracks, we will additionally consider events produced by all flavors of neutrinos down to GeV-scale energies. These new events should improve our analysis sensitivity since the flux falls quickly with energy. Determining the magnitude of the neutrino flux is essential, since it is an irreducible background to indirect solar dark matter searches

    Searches for IceCube Neutrinos Coincident with Gravitational Wave Events

    Get PDF

    IceCube search for neutrinos from GRB 221009A

    Get PDF

    Measurement of the Cosmic Neutrino Flux from the Southern Sky using 10 years of IceCube Starting Track Events

    Get PDF
    corecore