228 research outputs found

    In vitro regeneration of Momordica dioica (Roxb.)

    Get PDF
    Momordica dioica, Roxb. (Family: Cucurbitaceae) commonly called as Kartoli, is an important medicinal plant, which has remained unexplored from the commercial point of view. Considering its scarce availability and the medicinal importance, in vitro cultures were established. Traditionally, M. dioica has been propagated mainly through its tuberous roots and less commonly by seeds. Germination through seeds is very difficult or impossible because of hard seed coat. As an alternative to traditional methods tissue culture offers an efficient method for propagation of M. dioica. Mature seeds were used for the regeneration of M. dioica. The decoated seeds of M. dioica were cultured on Murashige and Skoog basal medium (MS medium) supplemented with various combinations of Auxins (á – naphthaleneacetic acid) and Cytokinins (N6 - benzyl adenine). MS basal medium supplemented with 4.44 µM and 8.88 µM N6 - benzyl adenine (BA) gave rise to maximum number of shoots in 7-8 weeks. In vitro grown shoots were sub cultured on MS medium supplemented with different concentrations of indole-3-butyric acid (IBA) for root initiation. MS medium with 0.049mM indole-3-butyric acid (IBA) showed rooting in 45 days. The regenerated plantlets were successfully hardened in vermiculite

    Do Ecological Niche Model Predictions Reflect the Adaptive Landscape of Species?: A Test Using Myristica malabarica Lam., an Endemic Tree in the Western Ghats, India

    Get PDF
    Ecological niche models (ENM) have become a popular tool to define and predict the “ecological niche” of a species. An implicit assumption of the ENMs is that the predicted ecological niche of a species actually reflects the adaptive landscape of the species. Thus in sites predicted to be highly suitable, species would have maximum fitness compared to in sites predicted to be poorly suitable. As yet there are very few attempts to address this assumption. Here we evaluate this assumption. We used Bioclim (DIVA GIS version 7.3) and Maxent (version 3.3.2) to predict the habitat suitability of Myristica malabarica Lam., an economically important tree occurring in the Western Ghats, India. We located populations of the trees naturally occurring in different habitat suitability regimes (from highly suitable to poorly suitable) and evaluated them for their regeneration ability and genetic diversity. We also evaluated them for two plant functional traits, fluctuating asymmetry – an index of genetic homeostasis, and specific leaf weight – an index of primary productivity, often assumed to be good surrogates of fitness. We show a significant positive correlation between the predicted habitat quality and plant functional traits, regeneration index and genetic diversity of populations. Populations at sites predicted to be highly suitable had a higher regeneration and gene diversity compared to populations in sites predicted to be poor or unsuitable. Further, individuals in the highly suitable sites exhibited significantly less fluctuating asymmetry and significantly higher specific leaf weight compared to individuals in the poorly suitable habitats. These results for the first time provide an explicit test of the ENM with respect to the plant functional traits, regeneration ability and genetic diversity of populations along a habitat suitability gradient. We discuss the implication of these resultsfor designing viable species conservation and restoration programs

    The Lemaitre-Schwarzschild Problem Revisited

    Get PDF
    The Lemaitre and Schwarzschild analytical solutions for a relativistic spherical body of constant density are linked together through the use of the Weyl quadratic invariant. The critical radius for gravitational collapse of an incompressible fluid is shown to vary continuously from 9/8 of the Schwarzschild radius to the Schwarzschild radius itself while the internal pressures become locally anisotropic.Comment: Final version as accepted by GR&G (to appear in vol. 34, september 2002

    Physical aspects of naked singularity explosion - How does a naked singularity explode? --

    Get PDF
    The behaviors of quantum stress tensor for the scalar field on the classical background of spherical dust collapse is studied. In the previous works diverging flux of quantum radiation was predicted. We use the exact expressions in a 2D model formulated by Barve et al. Our present results show that the back reaction does not become important during the semiclassical phase. The appearance of the naked singularity would not be affected by this quantum field radiation. To predict whether the naked singularity explosion occurs or not we need the theory of quantum gravity. We depict the generation of the diverging flux inside the collapsing star. The quantum energy is gathered around the center positively. This would be converted to the diverging flux along the Cauchy horizon. The ingoing negative flux crosses the Cauchy horizon. The intensity of it is divergent only at the central naked singularity. This diverging negative ingoing flux is balanced with the outgoing positive diverging flux which propagates along the Cauchy horizon. After the replacement of the naked singularity to the practical high density region the instantaneous diverging radiation would change to more milder one with finite duration.Comment: 18 pages, 16 figure

    Gravitational Collapse of Inhomogeneous Dust in (2+1) Dimensions

    Full text link
    We examine the gravitational collapse of spherically symmetric inhomogeneous dust in (2+1) dimensions, with cosmological constant. We obtain the analytical expressions for the interior metric. We match the solution to a vacuum exterior. We discuss the nature of the singularity formed by analyzing the outgoing radial null geodesics. We examine the formation of trapped surfaces during the collapse.Comment: Accepted for publication in CQ

    Can Naked Singularities Yield Gamma Ray Bursts?

    Get PDF
    Gamma-ray bursts are believed to be the most luminous objects in the Universe. There has been some suggestion that these arise from quantum processes around naked singularities. The main problem with this suggestion is that all known examples of naked singularities are massless and hence there is effectively no source of energy. It is argued that a globally naked singularity coupled with quantum processes operating within a distance of the order of Planck length of the singularity will probably yield energy burst of the order of M_pc^2\approx2\times 10^{16} ergs, where M_p is the Planck mass.Comment: 4 pages, TeX, no figure

    Convergence to a self-similar solution in general relativistic gravitational collapse

    Get PDF
    We study the spherical collapse of a perfect fluid with an equation of state P=kρP=k\rho by full general relativistic numerical simulations. For 0, it has been known that there exists a general relativistic counterpart of the Larson-Penston self-similar Newtonian solution. The numerical simulations strongly suggest that, in the neighborhood of the center, generic collapse converges to this solution in an approach to a singularity and that self-similar solutions other than this solution, including a ``critical solution'' in the black hole critical behavior, are relevant only when the parameters which parametrize initial data are fine-tuned. This result is supported by a mode analysis on the pertinent self-similar solutions. Since a naked singularity forms in the general relativistic Larson-Penston solution for 0, this will be the most serious known counterexample against cosmic censorship. It also provides strong evidence for the self-similarity hypothesis in general relativistic gravitational collapse. The direct consequence is that critical phenomena will be observed in the collapse of isothermal gas in Newton gravity, and the critical exponent γ\gamma will be given by γ0.11\gamma\approx 0.11, though the order parameter cannot be the black hole mass.Comment: 22 pages, 15 figures, accepted for publication in Physical Review D, reference added, typos correcte

    Toward a Midisuperspace Quantization of LeMaitre-Tolman-Bondi Collapse Models

    Get PDF
    LeMa\^\i tre-Tolman-Bondi models of spherical dust collapse have been used and continue to be used extensively to study various stellar collapse scenarios. It is by now well-known that these models lead to the formation of black holes and naked singularities from regular initial data. The final outcome of the collapse, particularly in the event of naked singularity formation, depends very heavily on quantum effects during the final stages. These quantum effects cannot generally be treated semi-classically as quantum fluctuations of the gravitational field are expected to dominate before the final state is reached. We present a canonical reduction of LeMa\^\i tre-Tolman-Bondi space-times describing the marginally bound collapse of inhomogeneous dust, in which the physical radius, RR, the proper time of the collapsing dust, τ\tau, and the mass function, FF, are the canonical coordinates, R(r)R(r), τ(r)\tau(r) and F(r)F(r) on the phase space. Dirac's constraint quantization leads to a simple functional (Wheeler-DeWitt) equation. The equation is solved and the solution can be employed to study some of the effects of quantum gravity during gravitational collapse with different initial conditions.Comment: 9 pages, 1 figure, Latex file. Minor corrections made. A general solution of the constraints is presented. Revised version to appear in Phys. Rev.
    corecore