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Abstract

Ecological niche models (ENM) have become a popular tool to define and predict the “ecological niche” of a species.
An implicit assumption of the ENMs is that the predicted ecological niche of a species actually reflects the adaptive
landscape of the species. Thus in sites predicted to be highly suitable, species would have maximum fitness
compared to in sites predicted to be poorly suitable. As yet there are very few attempts to address this assumption.
Here we evaluate this assumption. We used Bioclim (DIVA GIS version 7.3) and Maxent (version 3.3.2) to predict the
habitat suitability of Myristica malabarica Lam., an economically important tree occurring in the Western Ghats, India.
We located populations of the trees naturally occurring in different habitat suitability regimes (from highly suitable to
poorly suitable) and evaluated them for their regeneration ability and genetic diversity. We also evaluated them for
two plant functional traits, fluctuating asymmetry – an index of genetic homeostasis, and specific leaf weight – an
index of primary productivity, often assumed to be good surrogates of fitness. We show a significant positive
correlation between the predicted habitat quality and plant functional traits, regeneration index and genetic diversity
of populations. Populations at sites predicted to be highly suitable had a higher regeneration and gene diversity
compared to populations in sites predicted to be poor or unsuitable. Further, individuals in the highly suitable sites
exhibited significantly less fluctuating asymmetry and significantly higher specific leaf weight compared to individuals
in the poorly suitable habitats. These results for the first time provide an explicit test of the ENM with respect to the
plant functional traits, regeneration ability and genetic diversity of populations along a habitat suitability gradient. We
discuss the implication of these resultsfor designing viable species conservation and restoration programs.
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Introduction 

The concept of an ecological niche, proposed as early as
1900’s refers to a set of ecological conditions within which a
species is able to maintain its population [1,2]. Grinnell [2] was
the first to explore the relation between ecological niche and
geographic distribution of species. He argued that ecological

niche of a species is a key determinant that governs and limits
the geographic distribution of species. An implicit assumption
of the ecological niche is that, a species would maximize its
fitness within its ecological niche than outside of it [3,4]. This
assumption is based on the fact that over evolutionary time,
species would be selected to adapt to a set of variables,
characteristic of its ecological niche. Accordingly, it has been
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argued that, the fitness of a species would be highest at the
foci of species’ ecological niche and would gradually decrease
away from it [5]. Thus, viewed from the perspective of fitness,
the ecological niche of a species should reflect the fitness or
adaptive landscape of the species. However as yet there is no
explicit validation of the above assumption.

In the last two decades, a number of efforts have been made
to formally treat the concept of ecological niche of a species
using several modeling tools e.g. Bioclim[6],GARP [7],
Maxent[8], that make it possible to identify specific sites where
a species can thrive best. Essentially, the ENMs provide
prediction on the range of habitats on a probabilistic scale, from
least suitable to highly suitable, for a given species [9-12].
These correlative predictive models combine known
geographic locations of a given species with underlying
environmental data to identify suitable sites for given species
and then map this information to predict the species
geographic distribution. The ecological niche models have
been used in a wide range of applications such as in locating
rare and threatened species and habitats [13,14], rationalizing
choice of habitat for species re-introduction [15], predicting the
spread of invasive species [9], predicting the spread of crop
pests [16] and in estimating the response of species to global
climate change [17].

A number of studies have validated the predictions of the
ecological niche models in identifying the distribution of the
species. Most of these validations have been made using the
presence/absence data of the species in those predicted
habitats [18,19]. However, none of these studies have
attempted to directly test the robustness of the niche
predictions with respect to the species fitness in that habitat. In
a recent study, attempts have been made to correlate the
habitat suitability predictions with the natural species
distribution and abundance; species abundances were
negatively correlated with distance from the niche centroid of
the species [20]. Keeping everything else constant, this
suggests that species tend to be more abundant in sites
predicted to be highly suitable compared to sites predicted to
be poorly suitable.

In this paper, we argue that the habitat suitability of a species
as predicted by the ecological niche model may also reflect the
adaptive landscape of the species. Thus population of species
in sites predicted to be highly suitable would be expected to
have a higher fitness than con-specific populations in sites
predicted to be poorly suitable [4,5,20,21]. We examine this
hypothesis empirically using an endemic and economically
important tree Myristica malabarica Lam., in the Western
Ghats, India. First, using the existing natural distribution data of
the species, we generate ecological niche model predictions on
the habitat suitability of M. malabarica in the Western Ghats.
Second, we evaluate the fitness of the species in areas
predicted to be highly suitable and poorly suitable using several
direct and indirect measures of fitness [19,22-25]namely, a)
plant functional traits - fluctuating asymmetry and specific leaf
weight, b) recruitment or regeneration index and c) population
genetic variability. We discuss these results in the larger
context of ecological niche theory and models and their

applications in conservation and management of economically
important tree species.

Materials and Methods

Ethics statement
Myristica malabarica is an economically important plant,

endemic to India. Field work was carried out in the central
Western Ghats regions of Karnataka, with due permission from
the Karnataka Forest Department. Tissue sampling was carried
out under the supervision of local foresters and used solely for
scientific research. The sampling was non-invasive and does
not in any way affect the natural growth of M. malabarica.

Study site
The study was conducted in the Western Ghats, a mountain

chain running parallel to the West coast of India and one of the
34 biodiversity hotspots of the world [26]. Occupying about 5 %
of India’s landmass, it harbors about 27% of the country’s plant
species, with more than 60% endemic to the region [26]. The
Western Ghats has over 4500 flowering species including
economically important trees from Dipterocarpaceae,
Myristicaceae and other families [27]. The climate ranges from
tropical wet dry to tropical wet with elevation ranging from 1500
metres AMSL in the north to 2000 metres AMSL in the south.
Mean temperature varies from 24 °C in the north to 20 °C in the
south. The Western Ghats receive an average of 3000 to 4000
mm rainfall with occasional rainfall of 9000 mm. The present
study was conducted in central part of Western Ghats between
12° - 14° north and 74° - 75° east ( Table S1 in File S1). The
study area has a tropical climate with a well-defined rainy
season; between June and November the region receives
rainfall ranging from 300 to 2500 mm with temperature ranging
from 15 °C - 25 °C. The study was conducted during 2008 -
2010.

Study system
Myristica malabarica Lam. commonly known as “Bombay

mace, Malabar Nutmeg or Jaikai” belongs to the family
Myristicaceae[28]. It is an evergreen tree, growing up to 15-20
m in height. The species is distributed in the Western Ghats,
occasionally along freshwater streams and most frequently in
evergreen and semi-evergreen forests [28-30]. The trees bear
arillated fruit which is harvested and used as a condiment. In
recent years, because of extensive and indiscriminate harvest
of its fruits, the regeneration of the species is severely affected.
Furthermore, most of the natural habitat of M. malabarica has
also been fragmented due to human activities leading to
decline in the natural populations of M. malabarica. Owing to
these pressures, the species has been designated as
‘vulnerable’ [29]. Considering the threat and economic
importance of M. malabarica, in recent years there is a growing
interest in domesticating the species and in prioritizing areas
for its conservation.

How Good Are Niche Models in Predicting Fitness?
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Ecological niche modeling
Based on a number of field surveys undertaken over a two

year period (2008 to 2010) in the Western Ghats, we recorded
the latitude and longitude of 56 sites of occurrence of M.
malabarica using a global positioning system (GPS-Garmin12).
We used this primary presence only data for modeling the
species distribution [31].

We used three algorithms[32]to develop the potential
distribution and generating the suitability surfaces for the
species, namely, a) Bioclim (Bioclimatic analysis and prediction
system,) - this is based on presence only data and was run
using the envelope method using DIVA-GIS software, b) GARP
(Genetic Algorithm for Rule Set Prediction) - this uses pseudo-
absences to fit logistic regression to the data using Open
Modelers Best subset implementation protocol, c) Maxent,
(Maximum entropy) - this uses background points and
minimizes the entropy. The softwares used were MaxEnt
(version 3.3.2), DIVA-GIS (version 7.1.7.2; http://www.diva-
gis.org) and GARP (version 1.1.3). We used 19 bioclimatic
variables generated by Hijmans et al [33]; these were
downloaded from http://www.worldclim.org/ with 30 seconds
(~1km) spatial resolution. These variables represent
combinations of temperature and precipitation, which are
fundamental to species survival. We also built a model with
elevation and 19 bioclimatic variables, but the model
performance was not better than random. Though additional
layers such as disturbance, invasive species presence, forest
type, and other possible variables could have been used, these
may often overfit the model [34]. Also ecology of the species
suggests that temperature and precipitation variables are
sufficient to estimate its presence [30] and our field observation
suggests that there were no substantial differences among the
sites with respect to the other variables. Species occurrence
data was obtained from both literature and field survey. We
divided the 56 occurrence points into 2 sets of 50% each, one
set for calibration of model and the other set for evaluation of
model performance. We applied a buffer of 100 km around
Western Ghats to generate the calibration area for the model.
Barve et al [35], discusses the effect of calibration area in
training the model. We used the default setting for all the 3
models while training.

We used Least Training Presence Thresholding method for
converting the prediction into habitat suitable indices [36]. In
this method, we assigned the probability of presence to each
occurrence point and considered lowest suitability score as the
least score where species could be present. Bioclim and
Maxent uses continuous probability scale while GARP uses
integer scale; we multiplied Bioclim and Maxent prediction by
100 to have comparable scores among these models.

We used these calibrated models to evaluate the model
performance using the set of occurrence points that was not
used in building the model. As the classic area under curve
(AUC)-Receiver operating curve (ROC) gives equal weight to
commission and omission error [37], it is not greatly applicable
to the modeling algorithm where presence only data is used for
training the model. We used partial ROC method for testing
performance of the model against null expectation of random

model. The model calibration was better than random with p-
value < 0.05.

Of the three models, GARP did not sufficiently discriminate
sites based on their habitat suitability values, and hence we did
not consider the model prediction further. On the other hand,
Bioclim and Maxent discriminated the sites based on their
habitat suitability; furthermore the discrimination was
comparable between the models (see Figure 1 and Table S1 in
File S1). For all further purposes of the study, we therefore
restricted our analysis to Bioclim and Maxent models only.

Based on the model predictions, we selected sites
representing different habitat suitability indices to sample
individuals and populations to evaluate their fitness. For the
purpose of analysis, we considered the 14 sites as a continuum
of habitat suitability indices. The sites are separated
geographically ranging from 10 to 400 km in the Western Ghats
(Table S1 in File S1).

Predictions
Specifically we ask if populations of the species in sites

predicted to be highly suitable (with higher habitat suitability
index) have a higher fitness than con-specific populations in
sites predicted to be poorly suitable (with low habitat suitability
index). Traditionally, the unambiguous measure of fitness is
fecundity or reproductive output [38-41]. However, in canopy
trees, such as M. malabarica this is rarely feasible to be
measured. For the purpose of this study, we chose three
measures of species performance that have in the past been
used as measure of fitness, namely: a) plant functional traits -
fluctuating asymmetry (FA) and specific leaf weight (SLW), b)
recruitment or regeneration index and c) population genetic
variability. Accordingly, we make the following specific
predictions:

Prediction 1.  Individuals in areas predicted to be highly
suitable (by the ecological niche models) would be expected to
have a low FA (and hence higher fitness) in contrast to sites
predicted to be poorly suitable.

Prediction 2.  Individuals in areas predicted to be highly
suitable (by the ecological niche models) would be expected to
have a higher SLW (and hence contribute to higher fitness) in
contrast to sites predicted to be poorly suitable.

Prediction 3.  Populations in sites predicted to be highly
suitable (by the ecological niche models) would be expected to
have a higher regeneration index compared to those sites
predicted to be poorly suitable.

Prediction 4.  Populations in sites predicted to be highly
suitable (by the ecological niche models) would be expected to
have a higher genetic diversity compared to those sites
predicted to be poorly suitable.

Test of predictions
At each of the 14 selected sites of varying habitat suitability,

the data on the following were collected. The geographic range
of M. malabarica and 14 sampling locations is given in Figure
S1.

How Good Are Niche Models in Predicting Fitness?
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Fluctuating asymmetry and specific leaf weight
Fluctuating asymmetry (FA) is a widely used measure of

developmental instability [42,43]. An individual unable to buffer
random accidents of development, whether genetic or
environmental in origin, may exhibit deviation from perfect
symmetry [44]. Such deviations which are non-directional and
random are termed as fluctuating asymmetry. Although FA has
traditionally been used to measure developmental instability of
populations [45], this concept has been extended to address
various other ecological questions. According to FA model, less
asymmetric (more symmetric) individuals have greater
developmental stability, better survival rate, greater
reproductive success and fitness. In this study, we used FA as
a surrogate of fitness (or more precisely lack of fitness).

Matured leaves from 10 trees (branches were randomly
chosen for sampling) were collected from each of the 14 sites.
For each leaf we measured width of the right and left halves

from the midrib to the leaf margin at the mid-point (half-way
between the base and tip), perpendicular to the midrib. Leaf
fluctuating asymmetry was then calculated as: FA = (L – R)/
size, where L =width of the left side, R = width of the right side,
and size = (L + R)/2 [46].

Specific leaf weight (SLW) is the ratio of leaf mass to leaf
area. Physiologically, SLW refers to the density of packing of
chloroplast; a higher SLW would indicate a higher
photosynthetic efficiency and by extension can be expected to
be positively related to fitness of the individual.

The specific leaf weight was measured as a ratio of leaf dry
mass (mg) to its area (mm2). Ten matured leaves from each of
10 trees were harvested from each of the 14 populations. Leaf
discs (1 cm diameter) were punched and oven dried at 70 °C
for 72 h before being weighed. SLW was calculated as follows

SLW= dry weight of the leaf disc mg  /area of the leaf disc mm2

Figure 1.  Ecological niche prediction map of Myristica malabarica in the Western Ghats, India.  A) Bioclim B0 Maxent.The
sites at which the plants were sampled is also shown. .
doi: 10.1371/journal.pone.0082066.g001
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Regeneration index
Regeneration index is a direct reflection of the life history

strategy of a plant. It integrates the sum total of events from
reproduction to the successful establishment of progeny and
thus can be regarded as a measure of “realizable” fitness
[47,48]. At each of the 14 sites, 20 quadrats (10*10) were laid
and data on density of adults per quadrat and girth at breast
height (GBH)of all individuals in a quadrat was recorded [49].
The regeneration per quadrat was assessed by recording the
number of seedlings and saplings (< 1cm GBH) in 1 m2 nested
quadrats at two diagonal ends of each of the 20 quadrats. As
an index of regeneration per adult, we computed the ratio of
number of seedlings and saplings (<1cm GBH) to the total
number of adults per quadrat.

Genetic diversity
Population genetic variability at neutral markers such as

simple sequence repeats (SSR) indicates the sum of mating
events in a population and hence integrates a wide variety of
parameters including population density, gene flow, recruitment
success etc. This measure has been used in the past as a
measure of population fitness. For example, several earlier
studies have reported a direct association between the
population genetic variability and fecundity in plants and
animals [50-52].

Population genetic diversity estimates were determined for
12 of the 14 sites (for two sites, samples could not be
genotyped). Fresh leaf samples were collected from 10-25
individuals per site. Since the species is a canopy tree, we
resorted the services of tree climbers to access the tree crown
and to fetch the desired leaf sample. The leaves were dried in
silica gel and stored at -40 °C until DNA extraction. Total
genomic DNA was extracted from the leaves following a
standard CTAB procedure [53]. DNA quantification was
performed by comparison with known concentration of a DNA
standard (Lambda DNA) in ethidium-bromide stained 1%
agarose gel.

Microsatellite marker analysis of the populations (n=194
individuals) representing the 12 sites was carried out using 5
polymorphic primer pairs out of 11 published SSR primer pairs
developed for M. malabarica [54]. The protocol for
microsatellite DNA marker analysis at the 5 chosen loci is
described in Hemmilia et al [54].

The 5’ end of forward SSR primers were labelled with
fluorescent dye (FAM1, FAM2, NED Y, VIG G and PET R) and
samples for genotyping were prepared by mixing 10 μL of
deionized formamide, 0.1 μL of 35-500 bp internal size
standard (Applied Biosystems, Chromos Biotech) and 1 μL of
PCR product. The mixture was denatured at 95 °C for 2 min
and immediately placed on ice for a minimum of 5 minutes and
loaded onto an ABI 310 Genetic Analyzer (Applied Biosystems,
Chromos Biotech) for capillary electrophoresis and fluorescent
scanning detection. The electropherograms of genotypes were
analyzed using GeneScan 3.7 and Genotyper 3.7 (Applied
Biosystems).

The data was subjected to population genetic analysis to
measure the overall genetic variability of populations sampled
across the different habitat suitability regimes predicted by

ENM. The following measures were calculated using different
population genetic software: the mean number of alleles per
locus (averaged across 5 loci) and to avoid bias caused by
uneven sampling, a standardized estimate of allelic richness
and private alleles (alleles that are exclusive to a population
and habitat) independent of sample size [55] was calculated
using the program FSTAT 2.9.3 [56] and HP-RARE
[57]respectively.The gene diversity per locus (averaged over 5
loci) was calculated using program FSTAT 2.9.3[56]. Test for
linkage-disequilibrium and Wright’s F-statistics (Fis and Fst)
was assessed using GENEPOP 3.2a [58].

Statistical analysis
We used general linear model (GLM) to relate the three

fitness measures (functional traits, regeneration index and
genetic diversity parameters) with habitat suitability index. The
three fitness measures were defined as the response variables
and the habitat suitability index as a fixed explanatory variable.
The relationship of the three fitness measures, namely,
functional traits (FA and SLW), regeneration index and genetic
diversity parameters with habitat suitability index was also
evaluated using simple linear regression models. Besides, we
also analysed for differences in the frequency distribution of FA
and SLW across highly and poorly suitable habitats using a
non-parametric Kolmogorov-Smirnov (KS) two sample test[59].
For the Bioclim model we categorized the sites into highly
suitable (all sites with habitat suitability index > 100) and poorly
suitable (all sites with habitat suitability index < 50). Similarly,
for the Maxent model we categorized the sites into highly
suitable (all sites with habitat suitability index >70 and poorly
suitable (all sites with habitat suitability index <45). The
deviation of frequency distribution for FA and SLW from
normality was tested using skewness test. To minimize
sampling bias, data on both FA and SLW were randomized 25
times and at each time 50% of randomized data was subjected
to two sample KS and skewness test for the frequency
distribution of FA and SLW across highly suitable and poor
habitats (Table S2 and S3 in File S1).

As a possible alternative explanation, we also analyzed if the
population genetic parameters were correlated with the latitude
from where the samples were collected. The relationship was
statistically evaluated using univariate general linear models
[60].

Results

Calibration of models and niche model analyses
The model calibration test using partial ROC statistics for M.

malabarica yielded satisfactory results (Bioclim: ROC p<0.001,
MAXENT: ROC p<0.0001). Amongst the 19 input Bioclim
variables only 12 contributed to model variation (Table 1).
Among these 12 variables, annual precipitation (bio2)
contributed more to the model (44.5%) followed by mean
temperature of wettest quarter (bio18) (13.3%) and
precipitation of driest quarter (bio17) (12%). All three variables
together contributed 69.8% of variation to the model (Table 1).
The remaining 9 variables together contributed 30.3% variation
to the model (Table 1). Considering the permutation

How Good Are Niche Models in Predicting Fitness?
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importance, only 11 out of 19 variables contributed to the
model variation. Among the 11 variables, temperature
seasonality (bio4) (36%) and precipitation of wettest month
(bio13) (34.7%) had maximum influence on habitat suitability
model followed by mean temperature of wettest quarter (bio8)
(12.2%). All three variables together contributed to 82.9% of
the variation; the remaining 8 variables together contributed to
12.9% (Table 1).

Both models, Bioclim and Maxent, predicted the current
distribution of M. malabarica that was concordant with the
known distribution range of the species in the Western Ghats
(Figure 1). However as seen from the figure, not all areas in the
Western Ghats region are uniformly suitable. There are distinct
patches in the Western Ghats that are predicted to be very
highly suitable (dark red regions) as opposed to certain
patches that are poorly suitable (light yellow) or not suitable
(blue) at all. Most of the highly suitable sites are located in the
Central Western Ghats. The two models sufficiently
discriminated the 14 sites selected for the study based on their
habitat suitability indices (Figure 1 and Table S1 in File S1).

Fluctuating asymmetry and specific leaf weight
Fluctuating asymmetry of leaves differed significantly among

the sites (Bioclim= F=1.96, df=7, p=0.057; Maxent = F=3.22, df
=10, p<0.0001) (Table 2). Leaves of individuals in sites

Table 1. Estimates of relative contribution and permutation
importance of 19 bioclim variables to Maxent model.

Variables
Percent
contribution

Permutation
importance

Annual precipitation (bio12) 44.5 0.1
Mean temperature of wettest quarter
(bio8)

13.3 12.2

Precipitation of driest quarter (bio17) 12 4.9
Precipitation of coldest quarter (bio19) 9.6 0.2
Precipitation of wettest month (bio13) 6.8 34.7
Mean temperature of coldest quarter
(bio11)

5.2 5.3

Precipitation seasonality (bio15) 3.5 2.9
Precipitation of warmest quarter (bio18) 2.7 2.7
Isothermality (bio3) 1.7 0.9
Temperature seasonality (bio4) 0.4 36
Maximum temperature of coldest month
(bio6)

0.3 0

Annual mean temperature (bio1) 0.1 0
Mean temperature of driest quarter (bio9) 0 0.1
Precipitation of driest month (bio14) 0 0
Maximum temperature of warmest month
(bio5)

0 0

Temperature annual range (bio7) 0 0
Mean monthly temperature (bio2) 0 0
Mean temperature of warmest quarter
(bio10)

0 0

Precipitation of wettest quarter (bio16) 0 0

doi: 10.1371/journal.pone.0082066.t001

predicted to be highly suitable were less asymmetric compared
to those in poorly suitable habitats; for nearly 45% of all
individuals in the highly suitable habitat, the FA were very small
indicating that they were indeed symmetric (Figure 2A and B).
The frequency distribution of FA was sharply positively skewed
for individuals from highly suitable habitat compared to those
from poorly suitable habitat (Table S2 in File S1and Figure 2A
and B).The frequency distribution of FA across highly suitable
and poorly suitable habitat was significantly different (two
sample KS test for Bioclim p<0.01, for Maxent p<0.0001; Table
S3 in File S1). There was a significant relationship between
habitat suitability index and FA under Maxent model (p=0.032)
but not under Bioclim (p=0.268; Table 3).

Individuals occurring in highly suitable habitats had
significantly higher SLW compared to those occurring in the
poorly suitable habitats. The SLW was positively correlated
with habitat suitability index (Figure 3A and B and Table 3).
The frequency distribution of SLW was significantly different
across the highly suitable and poorly suitable habitats (Table
S3 and Table S4 in File S1, and Figure 2C and D). Finally, the
univariate ANOVA under GLM showed that the SLW was
significantly different among the different habitat suitability
categories under both Bioclim and Maxent models (Table 2).

Regeneration Index
There was a significant positive relationship between the

number of regenerants per adult (regeneration index) and
habitat suitability index based on both, Bioclim and Maxent
models (Figure 3 C and D and Table 3). Habitats that were
predicted to be highly suitable had on an average significantly
greater regeneration index compared to sites that were
predicted to be poorly suitable. For example, the site,
Seethanadi, that was predicted by both the models to be the
least suitable (habitat suitability index= 21 under Bioclim and 6
under Maxent) had the least regeneration index (=0.2)
compared to the site, Halasinakoppa (habitat suitability index of
221 (Bioclim) and 83 (Maxent) which had the highest
regeneration index of 1.2. Univariate ANOVA under GLM also
indicated that the regeneration index differed significantly
among the predicted habitat suitability categories under both
Bioclim and Maxent models (Table 2). The density of adults

Table 2. Relationship between plant fitness traits and
habitat suitability index under Bioclim and Maxent models.

 Models

Fitness traits Maxent Bioclim

 F(df) P F(df) P
Regeneration/adult 6.05(10) <0.0001 8.61(7) <0.0001
Specific Leaf Weight 83.94(10) <0.0001 34.01(7) <0.0001
Fluctuating Asymmetry 3.22(10) <0.0001 1.96(7) 0.057
Gene diversity per locus 0.47(10) 0.903 0.80(7) 0.591
Observed number of alleles 7.56(10) 0.008 8.56(7) 0.005
Allelic richness 3.05(10) 0.08 3.29(7) 0.074
Number of private alleles 7.52(10) 0.008 9.48 (7) 0.0032

doi: 10.1371/journal.pone.0082066.t002
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was not significantly correlated with the habitat suitability index
(p= 0.107 under Bioclim and p=0.40 under Maxent). The spatial
map of density of adults is given in Figure S2.

Genetic diversity
Over the 5 SSR loci, a total of 102 alleles were recovered

from 194 individuals sampled from 12 populations. The mean
allele number over all the loci for all the population was 15.4.
Observed allele number per locus was significantly correlated
with habitat quality (p=0.005 for Bioclim and p=0.008 for
Maxent) (Figure 4A and B and Table 3). The, gene diversity per
locus was also positively correlated with habitat quality under
both Bioclim (p=0.042) and Maxent models (p=0.023) (Figure
4C and D and Table 3). The number of private alleles (defined
as those alleles that are exclusive to the specific population)
increased with predicted habitat quality (p = 0.0032 for Bioclim
and p = 0.008 for Maxent) (Figure 5A and B and Table 3); for
example there was a nearly five-fold increase in the number of
private alleles from sites that was predicted to be least suitable
(Seethanadi and Ajjoli) to sites that was highly suitable

(Devimane, Tulsani and Halasinakoppa). The allelic richness
also increased with predicted habitat suitability (p = 0.074 for

Table 3. Simple linear regression between habitat suitability
index and plant fitness traits.

 Models

Fitness traits Bioclim Maxent 

 r-value p-value r-value p-value
Density 0.107 0.715 0.241 0.400
Regeneration/adult 0.705 0.01 0.719 0.008
Specific Leaf Weight 0.111 <0.0001 0.346 <0.0001
Fluctuating Asymmetry 0.031 0.268 0.06 0.032
Gene diversity/locus 0.592 0.042 0.646 0.023
Number of private alleles 0.375 0.0032 0.339 0.008
Observed number. of alleles per locus 0.359 0.005 0.339 0.008
Allelic richness 0.232 0.074 0.224 0.086

doi: 10.1371/journal.pone.0082066.t003

Figure 2.  Frequency distribution of fluctuating asymmetry (A: Bioclim; B: Maxent) and specific leaf weight (C: Bioclim;
D: Maxent) for highly suitable (blue) and poorly suitable (red) habitats (for details see text).  
doi: 10.1371/journal.pone.0082066.g002
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Bioclim and p = 0.086 for Maxent) (Figure 5A and B and Table
3). There was no significant differences in the percent
observed heterozygosity of the populations across predicted
habitat suitability. The spatial map of allelic richness and
genetic diversity are given in Figure S3.

Analysis of univariate ANOVA under general linear model
(GLM) (Table 2) also indicated that population genetic
parameters were significantly different among the sites (Table
2). However, gene diversity per locus was not significantly
different across sites. Except two parameters, namely,
observed number of alleles and pair-wise Fst, none of the
genetic diversity parameters (allelic richness, number of private
alleles and gene diversity per locus) were significantly
correlated with latitude (Table S5 in File S1).

Discussion

In recent years a number of ecological niche modeling
(ENM) tools have been used in predicting the habitat suitability
of species [9,11,13]. An implicit assumption of ecological niche

is that individuals of a species would maintain a higher level of
fitness within its niche than outside. However, few studies have
actually addressed the issue and fewer still have asked if
indeed the predictions made by ecological niche models on
habitat suitability reflect the variation in plant fitness and
abundance [61–63]. Among various constraints, impeding such
studies is the difficulty of accurately obtaining measures of
plant fitness along a gradient of habitat quality [63]. In absence
of robust measures of plant fitness, Violle et al. [22] have
suggested that several functional traits (physiological,
morphological or phenological) could be considered as
surrogates of plant fitness as these often relate to the final
reproductive output of the plants.

In this study we considered three parameters of species
performance, namely, plant functional traits (FA and SLW),
regeneration index and genetic diversity. All measures are
inter-dependent and reflect the cumulative effects of the life-
history processes of a population, and have been used in the
past to indicate the health of species’ population. For example,
seed production or fecundity of plants (as a direct measure of

Figure 3.  Specific leaf weight (A: Bioclim; B: Maxent) and regeneration index (C: Bioclim; D: Maxent) in relation to
habitat suitability index.  
doi: 10.1371/journal.pone.0082066.g003
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fitness) has been found to be significantly higher in genetically
diverse compared to inbred populations [64–66]; hence
measures of genetic diversity have often been used as
surrogates of fitness. As mentioned elsewhere, in our study, all
the three fitness measures, the functional traits (FA and SLW),
regeneration index and genetic diversity were significantly
related to the predicted habitat quality. All these relationships
are consistent with the predictions made by both the models,
Bioclim and Maxent.

Fluctuating asymmetry is a widely used measure of
developmental instability. The instability could be genetically
driven (as in developmental lethals) or environmental induced
(as under stressful environments). Our study showed that
individuals occurring in highly suitable habitats were
significantly less asymmetric in their leaf morphology compared
to those in poorly suitable habitat. In other words, it appears
that individuals and hence population in highly suitable habitats
might be more “fit” than those from the poorly suitable habitat.
The difference in FA between the habitats might reflect the

underlying genetic adaptations of respective populations;
individuals in the highly suitable habitat being better adapted to
their habitats than are individuals in the poorly suitable
habitats. In the latter scenario, individuals may also been seen
to be “stressed” in the poorly suitable habitats. Indeed, several
studies have reported a positive association between leaf FA
and environmental stress [67–69]. For example, leaf FA has
been shown to increase with pollution loads [70], higher
elevation [67] and colder climate [68]. Nagamitsu et al. [69]
showed that drying of soil and competing with invading plants
can also cause leaf FA.

Another functional trait, the specific leaf weight (SLW), is an
indicator of leaf thickness and the degree of mesophyll
development within a leaf blade. The extent of mesophyll
development largely determines the photosynthetic capacity of
a leaf, although intracellular effect or other factors such as
nutrient supply may also influence photosynthetic capacity [71].
Clearly a higher SLW can be expected to contribute to the net
fitness of a plant through enhanced resource supply for seed

Figure 4.  Population genetic parameters in relation to habitat suitability index.  Observed number of alleles (A: Bioclim; B:
Maxent) and Gene diversity per locus (C: Bioclim; D: Maxent) .
doi: 10.1371/journal.pone.0082066.g004
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production. A significantly higher SLW of plants in the highly
suitable habitat compared to plants in the poorly suitable
habitats once again indicate the relative adaptive landscape of
the plants. While in the former, photosynthetic process might
be expected to have been optimized, clearly in the latter (poorly
suitable habitats), these processes could be far from ideal.
Besides, contributing to the net photosynthates, SLW can also
contribute to deterring herbivore damage, and hence
contributing to fitness gains [72,73].

The number of regenerants per adult was significantly higher
for populations in highly suitable sites than in poorly suitable
sites indicating that as a direct measure of fitness, it pays to be
in habitats that are highly suitable. The higher number of
regenerants per adult (seedlings and saplings) might arise due
to a number of features in the populations in the highly suitable
sites. These might range from a higher mating probability to a
better survivability of the seeds in such habitats. It would be
interesting to tease out these different variables in order to
understand the critical role they play in shaping the lifetime
fitness of plants across the gradient of habitat suitability.

However, we did not find any significant differences in the
density of adults across the gradient of habitat suitability. In
other words, the increased regeneration in high habitat
suitability sites does not seem to be translated in to increased
density of adults. Lack of realization of recruits in to adults
could be influenced by number of contemporary variables such
as human disturbances, grazing pressures, man-made fire etc.,
all of which were observed at one time or the other during the
field visits (personal observation). These variables are
extraneous and do not reflect the intrinsic habitat quality. Thus
the differences in recruitment between the highly and poorly
suitable habitats may actually reflect the real population
differences due to differences in the habitat suitability.

Our study also demonstrated that observed mean number of
alleles per locus (NA) and gene diversity per locus were
significantly affected by habitat suitability. Also the highly
suitable habitats had higher number of private alleles
compared to poorly suitable habitats. These differences across
the habitat suitability could arise due to evolutionary ecological
processes. The highly suitable habitat may in fact indicate the

Figure 5.  Population genetic parameters in relation to habitat suitability index Number of private alleles (A: Bioclim; B:
Maxent) and Allelic richness (C: Bioclim; D: Maxent).  
doi: 10.1371/journal.pone.0082066.g005
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geographical foci of the species origin and diversification.
Accordingly these sites would be expected to represent the
allelic diversity of the species over the evolutionary time frame.
On the other hand, the poor habitat might represent the limits
of the species distribution and therefore could be expected to
have shed a number of alleles due to genetic drift [74].

To further reiterate that the observed patterns, both in the
demography and genetics, are a reflection of niche suitability,
we also analyzed if these patterns were related to the
latitudinal variations. Except two parameters, namely, observed
number of alleles and Fst, none of other genetic diversity
parameters were correlated with latitudinal variations,
indicating that the overriding influence is indeed the habitat
suitability. In summary, this is perhaps the first time that an
explicit demonstration of niche model outputs has been
empirically demonstrated to influence species fitness.

Recently, Dixon et al. [75]evaluated the “abundant center
hypothesis” with respect to demographic and genetic
parameters of Leavenworthiastylosa. They showed that
demographic parameters (plant density, average seed number
per plant) increased and genetic parameters (heterozygosity
and allelic richness) decreased with increasing distance from
the “abundant center” of species distribution. Assuming that the
abundant center of the species may actually represent the
niche centroid as proposed by Meyer et al. [21] it is clear that
the genetic diversity of the species is shaped by the habitat
suitability as is evident from our study.

But why should predictions about habitat suitability reflect
variation in plant fitness? Albert and Thuiller [76] argued that to
the extent that ecological niche models actually depend on and
base their prediction on the frequency occupation of habitats by
a species, it is likely that “among habitats occupied by the
species, the more frequent (habitats) are also the more
suitable”. In a categorical analysis of species records in
different habitat suitability types predicted by Bioclim and
Maxent, we found that there was a greater than expected
occurrence of species in habitats predicted to be highly suitable
compared to habitats predicted to be not suitable. In other
words, ecological niche models help pick out the most
frequently occupied habitat of a species. It is not uncommon
therefore to expect that it is in these habitats that species
would have adapted the most and would be expected to
maximize their individual fitness. Our results only confirm this
assumption. However, more studies with diverse taxa as case
examples may be required to further strengthen and confirm
this assumption.

The findings of the study provide a powerful handle for, and
direction to, the conservation of rare, endangered and
otherwise threatened species. Over the last few years,
ecological niche models have become very popular in
rationalizing choice of habitat for species re-introduction and
ex-situ conservation [77–79]. These choices have rested on the
predictions made by the ENMs with respect to the presence/
absence of the species in those predicted habitats. However,
none of these studies have attempted to test the robustness of
the niche predictions with respect to the species fitness in that
habitat and the genetic variability of the species. Our results
suggest that species re-introductions, species restoration and

even domestication of species can be guided by ecological
niche models and species thus translocated or domesticated
are likely to perform better and have a higher fitness than if
they were performed at random.

Finally with specific reference to M. malabarica itself, from
our results it is evident that not all regions in the Western Ghats
are uniformly suitable for the species. In fact within the Western
Ghats, certain areas are highly suitable and others are
unsuitable. Areas that have highest “habitat suitability index”
would be ideal locations for domestication/cultivation of the
species. The Karnataka Forest Department, for example, is
keen to enrich the population status of M. malabarica in the
Western Ghats. The outputs of this study, specifically the
prediction of the ENM provide a robust platform for identifying
sites for establishing such enrichment plantations.
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Figure S1.  Distribution records and sampling sites of M.
malabarica inthe Western Ghats.
(TIF)

Figure S2.  Density of adults of M. malabarica at the
sampling sites in the Western Ghats. Note: Regions
represented in black indicate areas of high genetic diversity
and allelic richness.
(TIF)

Figure S3.  Map showing genetic diversity parameters of
Myristica malabarica at sampling locations in the Western
Ghats. A) Allelic richness B) Genetic diversity. Note: Regions
represented in black indicate areas of high genetic diversity
and allelic richness.
(TIF)
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fluctuating asymmetry across highly suitable and poorly
suitable habitats.Table S3, Kolmogorov-Smirnov (KS) two
sample tests for frequency distribution of fluctuating asymmetry
and specific leaf weight across highly suitable and poorly
suitable habitats. Table S4, Skewnessand Kurtosis tests for
frequency distribution of specific leaf weight across highly
suitable and poorly suitable habitat. Table S5, The univariate
ANOVA under general linear model (GLM) for different genetic
diversity parameters across latitudinal gradient.
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