14 research outputs found

    Acoustic Feature Identification to Recognize Rag Present in Borgit

    Get PDF
    In the world of Indian classical music, raga recognition is a crucial undertaking. Due to its particular sound qualities, the traditional wind instrument known as the borgit presents special difficulties for automatic raga recognition. In this research, we investigate the use of auditory feature identification methods to create a reliable raga recognition system for Borgit performances. Each of the Borgits, the devotional song of Assam is enriched with rag and each rag has unique melodious tune. This paper has carried out few experiments on the audio samples of rags and a few Borgits sung with those rugs. In this manuscript three mostly used rags and a few Borgits  with these rags are considered for the experiment. Acoustic features considred here are FFT (Fast Fourier Transform), ZCR (Zero Crossing Rates), Mean and Standard deviation of pitch contour and RMS(Root Mean Square). After evaluation and analysis it is seen that FFT  and ZCR are two noteworthy acoustic features that helps to identify the rag present in Borgits. At last K-means clustering was applied on the FFT and ZCR values of the Borgits and were able to find correct grouping according to rags present there. This research validates FFT and ZCR as most precise acoustic parameters for rag identification in Borgit. Here researchers had observed roles of Standard deviation of pitch contour and RMS values of the audio samples in rag identification. &nbsp

    Community and species-specific responses of plant traits to 23 years of experimental warming across subarctic tundra plant communities

    Get PDF
    To improve understanding of how global warming may affect competitive interactions among plants, information on the responses of plant functional traits across species to long-term warming is needed. Here we report the effect of 23 years of experimental warming on plant traits across four different alpine subarctic plant communities: tussock tundra, Dryas heath, dry heath and wet meadow. Open-top chambers (OTCs) were used to passively warm the vegetation by 1.5–3 °C. Changes in leaf width, leaf length and plant height of 22 vascular plant species were measured. Long-term warming significantly affected all plant traits. Overall, plant species were taller, with longer and wider leaves, compared with control plots, indicating an increase in biomass in warmed plots, with 13 species having significant increases in at least one trait and only three species having negative responses. The response varied among species and plant community in which the species was sampled, indicating community-warming interactions. Thus, plant trait responses are both species- and community-specific. Importantly, we show that there is likely to be great variation between plant species in their ability to maintain positive growth responses over the longer term, which might cause shifts in their relative competitive ability.Scopu

    Transitions and its indicators in mutualistic meta-networks: effects of network topology, size of metacommunities and species dispersal

    No full text
    Baruah G. Transitions and its indicators in mutualistic meta-networks: effects of network topology, size of metacommunities and species dispersal. Evolutionary Ecology . 2023.Gradual changes in the environment could cause dynamical ecological networks to suddenly shift from one state to an alternative state. When this happens ecosystem functions and services provided by ecological networks get disrupted. We, however, know very little about how the topology of such interaction networks can play a role in the transition of ecological networks when spatial interactions come into play. In the event of such unwanted transitions, little is known about how statistical metrics used to inform such impending transitions, measured at the species-level or at the community-level could relate to network architecture and the size of the metacommunity. Here, using hundred and one empirical plant-pollinator networks in a spatial setting, I evaluated the impact of network topology and spatial scale of species interactions on transitions, and on statistical metrics used as predictors to forecast such transitions. Using generalized Lotka-Volterra equations in a meta-network framework, I show that species dispersal rate and the size of the metacommunity can impact when a transition can occur. In addition, forecasting such unwanted transitions of meta-networks using statistical metrics of instability was also consequently dependent on the topology of the network, species dispersal rate, and the size of the metacommunity. The results indicated that the plant-pollinator meta-networks that could exhibit stronger statistical signals before collapse than others were dependent on their network architecture and on the spatial scale of species interactions

    Effect of habitat quality and phenotypic variation on abundance‐ and trait‐based early warning signals of population collapses

    Full text link
    Loss of resilience in population numbers in response to environmental perturbations may be predicted with statistical metrics called early warning signals (EWS) that are derived from abundance time series. These signals, however, have been shown to have limited success, leading to the development of trait-based EWS that are based on information collected from phenotypic traits such as body size. Experimental work assessing the efficacy of EWS under varying ecological and environmental factors are rare. In addition, disentangling how such warning signals are affected under varying ecological and environmental factors is key to their application in biological conservation. Here, we experimentally test how different rates of environmental forcing (i.e. warming) and varying ecological factors (i.e. habitat quality and phenotypic diversity) affected population stability and predictive power of early warning signals of population collapse. We analyzed population density and body size time series data from three phenotypically different populations of a protozoan ciliate Askenasia volvox in two levels of habitat quality subjected to three different treatments of warming (i.e. no warming, fast warming and slow warming). We then evaluated how well abundance- and trait-based EWS predicted population collapses under different levels of phenotypic diversity, habitat quality and warming treatments. Our results suggest that habitat quality and warming treatments had more profound effects than phenotypic diversity had on both population stability and on the performance of abundance-based signals of population collapse. In addition, trait-based EWS generally performed well, were reliable and more robust in forecasting population collapse than abundance-based EWS, regardless of variation in environmental and ecological factors. Our study points towards the development of a predictive framework that includes information from phenotypic traits such as body size as an indicator of loss of resilience of ecological systems in response to environmental perturbations

    Impacts of seven years of experimental warming and nutrient addition on neighbourhood species interactions and community structure in two contrasting alpine plant communities

    Get PDF
    Global change is predicted to have major impacts on alpine and arctic ecosystems. Plant fitness and growth will be determined by how plants interact with each other at smaller scales. Local-scale neighbourhood interactions may be altered by environmental pertubations, which could fundamentally affect community structure. This study examined the effects of seven years of experimental warming and nutrient addition on overall changes in the community structure and patterns of interspecific interaction between neighbouring plant species in two contrasting alpine plant communities, mesic meadow and poor heath, in subarctic Sweden. We used a network approach to quantify the dissimilarity of plant interaction networks and the average number of interspecific neighbourhood interactions over time in response to different environmental perturbations. The results revealed that combined warming and nutrient addition had significant negative effects on how dissimilar plant interaction networks were over time compared with the control. Moreover, plant–plant neighbourhood interaction networks were more dissimilar over time in nutrient-poor heath than in nutrient-rich mesic meadow. In addition, nutrient addition alone and combined nutrient addition and warming significantly affected neighbourhood species interactions in both plant communities. Surprisingly, changes in interspecific neighbourhood interactions over time in both communities were very similar, suggesting that the nutrient-poor heath is as robust to experimental environmental perturbation as the mesic meadow. Comparisons of changes in neighbouring species interactions with changes in evenness and richness at the same scale, in order to determine whether diversity drove such changes in local-scale interaction patterns, provided moderate evidence that diversity was behind the changes in local-scale interspecific neighbourhood interactions. This implied that species might interact at smaller scales than those at which community measures were made. Overall, these results demonstrated that global change involving increased nutrient deposition and warming is likely to affect species interactions and alter community structure in plant communities, whether rich or poor in nutrients and species

    Impacts of seven years of experimental warming and nutrient addition on neighbourhood species interactions and community structure in two contrasting alpine plant communities

    Get PDF
    Global change is predicted to have major impacts on alpine and arctic ecosystems. Plant fitness and growth will be determined by how plants interact with each other at smaller scales. Local-scale neighbourhood interactions may be altered by environmental pertubations, which could fundamentally affect community structure. This study examined the effects of seven years of experimental warming and nutrient addition on overall changes in the community structure and patterns of interspecific interaction between neighbouring plant species in two contrasting alpine plant communities, mesic meadow and poor heath, in subarctic Sweden. We used a network approach to quantify the dissimilarity of plant interaction networks and the average number of interspecific neighbourhood interactions over time in response to different environmental perturbations. The results revealed that combined warming and nutrient addition had significant negative effects on how dissimilar plant interaction networks were over time compared with the control. Moreover, plant–plant neighbourhood interaction networks were more dissimilar over time in nutrient-poor heath than in nutrient-rich mesic meadow. In addition, nutrient addition alone and combined nutrient addition and warming significantly affected neighbourhood species interactions in both plant communities. Surprisingly, changes in interspecific neighbourhood interactions over time in both communities were very similar, suggesting that the nutrient-poor heath is as robust to experimental environmental perturbation as the mesic meadow. Comparisons of changes in neighbouring species interactions with changes in evenness and richness at the same scale, in order to determine whether diversity drove such changes in local-scale interaction patterns, provided moderate evidence that diversity was behind the changes in local-scale interspecific neighbourhood interactions. This implied that species might interact at smaller scales than those at which community measures were made. Overall, these results demonstrated that global change involving increased nutrient deposition and warming is likely to affect species interactions and alter community structure in plant communities, whether rich or poor in nutrients and species.The authors thank the staff of Abisko Scientific Research Station for their help and hospitality, and Vivian and Björn Aldén for assistance in the field. This study was funded by a grant from Oscar och Lilli Lamms Minne to JMA
    corecore