167 research outputs found

    Effects of Solution Chemistry and Aging Time on Prion Protein Adsorption and Replication of Soil-Bound Prions

    Get PDF
    Prion interactions with soil may play an important role in the transmission of chronic wasting disease (CWD) and scrapie. Prions are known to bind to a wide range of soil surfaces, but the effects of adsorption solution chemistry and long-term soil binding on prion fate and transmission risk are unknown. We investigated HY TME prion protein (PrPSc) adsorption to soil minerals in aqueous solutions of phosphate buffered saline (PBS), sodium chloride, calcium chloride, and deionized water using western blotting. The replication efficiency of bound prions following adsorption in these solutions was also evaluated by protein misfolding cyclic amplification (PMCA). Aging studies investigated PrPSc desorption and replication efficiency up to one year following adsorption in PBS or DI water. Results indicate that adsorption solution chemistry can affect subsequent prion replication or desorption ability, especially after incubation periods of 30 d or longer. Observed effects were minor over the short-term (7 d or less). Results of long-term aging experiments demonstrate that unbound prions or prions bound to a diverse range of soil surfaces can readily replicate after one year. Our results suggest that while prion-soil interactions can vary with solution chemistry, prions bound to soil could remain a risk for transmitting prion diseases after months in the environment

    The Strain-Encoded Relationship between PrPSc Replication, Stability and Processing in Neurons is Predictive of the Incubation Period of Disease

    Get PDF
    Prion strains are characterized by differences in the outcome of disease, most notably incubation period and neuropathological features. While it is established that the disease specific isoform of the prion protein, PrPSc, is an essential component of the infectious agent, the strain-specific relationship between PrPSc properties and the biological features of the resulting disease is not clear. To investigate this relationship, we examined the amplification efficiency and conformational stability of PrPSc from eight hamster-adapted prion strains and compared it to the resulting incubation period of disease and processing of PrPSc in neurons and glia. We found that short incubation period strains were characterized by more efficient PrPSc amplification and higher PrPSc conformational stabilities compared to long incubation period strains. In the CNS, the short incubation period strains were characterized by the accumulation of N-terminally truncated PrPSc in the soma of neurons, astrocytes and microglia in contrast to long incubation period strains where PrPSc did not accumulate to detectable levels in the soma of neurons but was detected in glia similar to short incubation period strains. These results are inconsistent with the hypothesis that a decrease in conformational stability results in a corresponding increase in replication efficiency and suggest that glia mediated neurodegeneration results in longer survival times compared to direct replication of PrPSc in neurons

    Prion Protein Polymorphisms Affect Chronic Wasting Disease Progression

    Get PDF
    Analysis of the PRNP gene in cervids naturally infected with chronic wasting disease (CWD) suggested that PRNP polymorphisms affect the susceptibility of deer to infection. To test this effect, we orally inoculated 12 white-tailed deer with CWD agent. Three different PRNP alleles, wild-type (wt; glutamine at amino acid 95 and glycine at 96), Q95H (glutamine to histidine at amino acid position 95) and G96S (glycine to serine at position 96) were represented in the study cohort with 5 wt/wt, 3 wt/G96S, and 1 each wt/Q95H and Q95H/G96S. Two animals were lost to follow-up due to intercurrent disease. The inoculum was prepared from Wisconsin hunter-harvested homozygous wt/wt animals. All infected deer presented with clinical signs of CWD; the orally infected wt/wt had an average survival period of 693 days post inoculation (dpi) and G96S/wt deer had an average survival period of 956 dpi. The Q95H/wt and Q95H/G96S deer succumbed to CWD at 1,508 and 1,596 dpi respectively. These data show that polymorphisms in the PRNP gene affect CWD incubation period. Deer heterozygous for the PRNP alleles had extended incubation periods with the Q95H allele having the greatest effect

    Detection and Localisation of PrPSc in the Liver of Sheep Infected with Scrapie and Bovine Spongiform Encephalopathy

    Get PDF
    Prions are largely contained within the nervous and lymphoid tissue of transmissible spongiform encephalopathy (TSE) infected animals. However, following advances in diagnostic sensitivity, PrPSc, a marker for prion disease, can now be located in a wide range of viscera and body fluids including muscle, saliva, blood, urine and milk, raising concerns that exposure to these materials could contribute to the spread of disease in humans and animals. Previously we demonstrated low levels of infectivity in the liver of sheep experimentally challenged with bovine spongiform encephalopathy. In this study we show that PrPSc accumulated in the liver of 89% of sheep naturally infected with scrapie and 100% of sheep challenged with BSE, at both clinical and preclinical stages of the disease. PrPSc was demonstrated in the absence of obvious inflammatory foci and was restricted to isolated resident cells, most likely Kupffer cells

    A Lentivirus-Mediated Genetic Screen Identifies Dihydrofolate Reductase (DHFR) as a Modulator of Ξ²-Catenin/GSK3 Signaling

    Get PDF
    The multi-protein Ξ²-catenin destruction complex tightly regulates Ξ²-catenin protein levels by shuttling Ξ²-catenin to the proteasome. Glycogen synthase kinase 3Ξ² (GSK3Ξ²), a key serine/threonine kinase in the destruction complex, is responsible for several phosphorylation events that mark Ξ²-catenin for ubiquitination and subsequent degradation. Because modulation of both Ξ²-catenin and GSK3Ξ² activity may have important implications for treating disease, a complete understanding of the mechanisms that regulate the Ξ²-catenin/GSK3Ξ² interaction is warranted. We screened an arrayed lentivirus library expressing small hairpin RNAs (shRNAs) targeting 5,201 human druggable genes for silencing events that activate a Ξ²-catenin pathway reporter (BAR) in synergy with 6-bromoindirubin-3β€²oxime (BIO), a specific inhibitor of GSK3Ξ². Top screen hits included shRNAs targeting dihydrofolate reductase (DHFR), the target of the anti-inflammatory compound methotrexate. Exposure of cells to BIO plus methotrexate resulted in potent synergistic activation of BAR activity, reduction of Ξ²-catenin phosphorylation at GSK3-specific sites, and accumulation of nuclear Ξ²-catenin. Furthermore, the observed synergy correlated with inhibitory phosphorylation of GSK3Ξ² and was neutralized upon inhibition of phosphatidyl inositol 3-kinase (PI3K). Linking these observations to inflammation, we also observed synergistic inhibition of lipopolysaccharide (LPS)-induced production of pro-inflammatory cytokines (TNFΞ±, IL-6, and IL-12), and increased production of the anti-inflammatory cytokine IL-10 in peripheral blood mononuclear cells exposed to GSK3 inhibitors and methotrexate. Our data establish DHFR as a novel modulator of Ξ²-catenin and GSK3 signaling and raise several implications for clinical use of combined methotrexate and GSK3 inhibitors as treatment for inflammatory disease

    Presence and Seeding Activity of Pathological Prion Protein (PrPTSE) in Skeletal Muscles of White-Tailed Deer Infected with Chronic Wasting Disease

    Get PDF
    Chronic wasting disease (CWD) is a contagious, rapidly spreading transmissible spongiform encephalopathy (TSE), or prion disease, occurring in cervids such as white tailed-deer (WTD), mule deer or elk in North America. Despite efficient horizontal transmission of CWD among cervids natural transmission of the disease to other species has not yet been observed. Here, we report for the first time a direct biochemical demonstration of pathological prion protein PrPTSE and of PrPTSE-associated seeding activity, the static and dynamic biochemical markers for biological prion infectivity, respectively, in skeletal muscles of CWD-infected cervids, i. e. WTD for which no clinical signs of CWD had been recognized. The presence of PrPTSE was detected by Western- and postfixed frozen tissue blotting, while the seeding activity of PrPTSE was revealed by protein misfolding cyclic amplification (PMCA). Semi-quantitative Western blotting indicated that the concentration of PrPTSE in skeletal muscles of CWD-infected WTD was approximately 2000-10000 -fold lower than in brain tissue. Tissue-blot-analyses revealed that PrPTSE was located in muscle-associated nerve fascicles but not, in detectable amounts, in myocytes. The presence and seeding activity of PrPTSE in skeletal muscle from CWD-infected cervids suggests prevention of such tissue in the human diet as a precautionary measure for food safety, pending on further clarification of whether CWD may be transmissible to humans
    • …
    corecore