487 research outputs found
Progress in Three-Dimensional Coherent X-Ray Diffraction Imaging
The Fourier inversion of phased coherent diffraction patterns offers images
without the resolution and depth-of-focus limitations of lens-based tomographic
systems. We report on our recent experimental images inverted using recent
developments in phase retrieval algorithms, and summarize efforts that led to
these accomplishments. These include ab-initio reconstruction of a
two-dimensional test pattern, infinite depth of focus image of a thick object,
and its high-resolution (~10 nm resolution) three-dimensional image.
Developments on the structural imaging of low density aerogel samples are
discussed.Comment: 5 pages, X-Ray Microscopy 2005, Himeji, Japa
Recommended from our members
Extreme prepulse contrast utilizing cascaded-optical parametric amplification
It has been shown recently that an optical parametric chirped-pulse amplifier can be easily reconfigured into a cascaded-optical parametric amplifier (COPA), enabling complete prepulse removal and optical switching with a window defined by the pump pulse duration. We have demonstrated instrument-limited measurement of the COPA prepulse contrast >1.4 x 10{sup 11} using 30-mJ pulses. The COPA technique is applicable to all energy ranges and pulse durations. A convenient millijoule-scale implementation of this technique is presented using a single, large-aspect-ratio quasi-phase-matched nonlinear crystal
Recommended from our members
Optical switching and contrast enhancement in intense laser systems by cascaded optical parametric amplification
Optical parametric chirped-pulse amplification (OPCPA) can be used to improve the prepulse contrast in chirped-pulse amplification systems by amplifying the main pulse with a total saturated OPCPA gain, while not affecting the preceding prepulses of the seed oscillator mode-locked pulse train. We show that a simple modification of a multistage OPCPA system into a cascaded optical parametric amplifier (COPA) results in an optical switch and extreme contrast enhancement which can completely eliminate the preceding and trailing oscillator pulses. Instrument-limited measurement of prepulse contrast ratio of 1.4 x 10{sup 11} is demonstrated from COPA at a 30-mJ level
Two Approaches to Aggregate Smart Grid’s Energy Systems’ Production Plan
International audienc
Towards a generic approach to manage smart grids like any other power plant
International audienc
Recommended from our members
Comparison of amplified spontaneous emission pulse cleaners for use in chirped pulse amplification front end lasers
We compare various schemes for removing amplified spontaneous emission from seed laser pulses. We focus on compact schemes that are compatible with fiber laser front end systems with pulse energies in the 10nJ-1{micro}J range and pulse widths in the 100fs-10ps range. Pre-pulse contrast ratios greater than 10{sup 9} have been measured
Split-aperture laser pulse compressor design tolerant to alignment and line-density differences
This paper was published in Optics Letters and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OL.33.001902 Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law
Cryptotomography: reconstructing 3D Fourier intensities from randomly oriented single-shot diffraction patterns
We reconstructed the 3D Fourier intensity distribution of mono-disperse
prolate nano-particles using single-shot 2D coherent diffraction patterns
collected at DESY's FLASH facility when a bright, coherent, ultrafast X-ray
pulse intercepted individual particles of random, unmeasured orientations. This
first experimental demonstration of cryptotomography extended the
Expansion-Maximization-Compression (EMC) framework to accommodate unmeasured
fluctuations in photon fluence and loss of data due to saturation or background
scatter. This work is an important step towards realizing single-shot
diffraction imaging of single biomolecules.Comment: 4 pages, 4 figure
Three-dimensional coherent X-ray diffraction imaging of a ceramic nanofoam: determination of structural deformation mechanisms
Ultra-low density polymers, metals, and ceramic nanofoams are valued for
their high strength-to-weight ratio, high surface area and insulating
properties ascribed to their structural geometry. We obtain the labrynthine
internal structure of a tantalum oxide nanofoam by X-ray diffractive imaging.
Finite element analysis from the structure reveals mechanical properties
consistent with bulk samples and with a diffusion limited cluster aggregation
model, while excess mass on the nodes discounts the dangling fragments
hypothesis of percolation theory.Comment: 8 pages, 5 figures, 30 reference
- …