277 research outputs found

    3-junction SQUID rocking ratchet

    Full text link
    We investigate 3-junction SQUIDs which show voltage rectification if biased with an ac current drive with zero mean value. The Josephson phase across the SQUID experiences an effective ratchet potential, and the device acts as an efficient rocking ratchet, as demonstrated experimentally for adiabatic and nonadiabatic drive frequencies. For high-frequency drives the rectified voltage is quantized due to synchronization of the phase dynamics with the external drive. The experimental data are in excellent agreement with numerical simulations including thermal fluctuations.Comment: 5 pages, 4 figures -- Fig.4 revise

    Nonclassical Kinetics in Constrained Geometries: Initial Distribution Effects

    Full text link
    We present a detailed study of the effects of the initial distribution on the kinetic evolution of the irreversible reaction A+B -> 0 in one dimension. Our analytic as well as numerical work is based on a reaction-diffusion model of this reaction. We focus on the role of initial density fluctuations in the creation of the macroscopic patterns that lead to the well-known kinetic anomalies in this system. In particular, we discuss the role of the long wavelength components of the initial fluctuations in determining the long-time behavior of the system. We note that the frequently studied random initial distribution is but one of a variety of possible distributions leading to interesting anomalous behavior. Our discussion includes an initial distribution with correlated A-B pairs and one in which the initial distribution forms a fractal pattern. The former is an example of a distribution whose long wavelength components are suppressed, while the latter exemplifies one whose long wavelength components are enhanced, relative to those of the random distribution.Comment: To appear in International Journal of Bifurcation and Chaos Vol. 8 No.

    Rectifying fluctuations in an optical lattice

    Get PDF
    We have realized a Brownian motor by using cold atoms in a dissipative optical lattice as a model system. In our experiment the optical potential is spatially symmetric and the time-symmetry of the system is broken by applying appropriate zero-mean ac forces. We identify a regime of rectification of forces and a regime of rectification of fluctuations, the latter corresponding to the realization of a Brownian motor

    Nonlinear dynamics, rectification, and phase locking for particles on symmetrical two-dimensional periodic substrates with dc and circular ac drives

    Full text link
    We investigate the dynamical motion of particles on a two-dimensional symmetric periodic substrate in the presence of both a dc drive along a symmetry direction of the periodic substrate and an additional circular ac drive. For large enough ac drives, the particle orbit encircles one or more potential maxima of the periodic substrate. In this case, when an additional increasing dc drive is applied in the longitudinal direction, the longitudinal velocity increases in a series of discrete steps that are integer multiples of the lattice constant of the substrate times the frequency. Fractional steps can also occur. These integer and fractional steps correspond to distinct stable dynamical orbits. A number of these phases also show a rectification in the positive or negative transverse direction where a non-zero transverse velocity occurs in the absence of a dc transverse drive. We map out the phase diagrams of the regions of rectification as a function of ac amplitude, and find a series of tongues. Most of the features, including the steps in the longitudinal velocity and the transverse rectification, can be captured with a simple toy model and by arguments from nonlinear maps. We have also investigated the effects of thermal disorder and incommensuration on the rectification phenomena, and find that for increasing disorder, the rectification regions are gradually smeared and the longitudinal velocity steps are no longer flat but show a linearly increasing velocity.Comment: 14 pages, 17 postscript figure

    Directed transport in a ratchet with internal and chemical freedoms

    Full text link
    We consider mechanisms of directed transport in a ratchet model comprising, besides the external freedom where transport occurs, a chemical freedom that replaces the familiar external driving by an autonomous dynamics providing energy input, and an internal freedom representing a functional mode of a motor molecule. The dependence of the current on various parameters is studied in numerical simulations of our model. In particular, we point out the role of the internal freedom as a buffer between energy input and output of mechanical work that allows a temporary storage of injected energy and can contribute to the efficiency of current generation.Comment: 7 pages, 9 figure

    High efficiency deterministic Josephson Vortex Ratchet

    Full text link
    We investigate experimentally a Josephson vortex ratchet -- a fluxon in an asymmetric periodic potential driven by a deterministic force with zero time average. The highly asymmetric periodic potential is created in an underdamped annular long Josephson junction by means of a current injector providing efficiency of the device up to 91%. We measured the ratchet effect for driving forces with different spectral content. For monochromatic high-frequency drive the rectified voltage becomes quantized. At high driving frequencies we also observe chaos, sub-harmonic dynamics and voltage reversal due to the inertial mass of a fluxon.Comment: accepted by PRL. To see status click on http://134.2.74.170:88/cnt/cond-mat_0506754.htm

    Ratchet potential for fluxons in Josephson-Junction arrays

    Full text link
    We propose a simple configuration of a one-dimensional parallel array of Josephson junctions in which the pinning potential for trapped fluxons lacks inversion symmetry (ratchet potential). This sytem can be modelised by a set of non-linear pendula with alternating lengths and harmonic couplings. We show, by molecular dynamics simulations, that fluxons behave as single particles in which the predictions for overdamped thermal ratchet can be easily verified.Comment: 7 pages, 8 figure

    Quantization and Corrections of Adiabatic Particle Transport in a Periodic Ratchet Potential

    Full text link
    We study the transport of an overdamped particle adiabatically driven by an asymmetric potential which is periodic in both space and time. We develop an adiabatic perturbation theory after transforming the Fokker-Planck equation into a time-dependent hermitian problem, and reveal an analogy with quantum adiabatic particle transport. An analytical expression is obtained for the ensemble average of the particle velocity in terms of the Berry phase of the Bloch states. Its time average is shown to be quantized as a Chern number in the deterministic or tight-binding limit, with exponentially small corrections. In the opposite limit, where the thermal energy dominates the ratchet potential, a formula for the average velocity is also obtained, showing a second order dependence on the potential.Comment: 8 page

    Quantum ratchets in dissipative chaotic systems

    Full text link
    Using the method of quantum trajectories we study a quantum chaotic dissipative ratchet appearing for particles in a pulsed asymmetric potential in the presence of a dissipative environment. The system is characterized by directed transport emerging from a quantum strange attractor. This model exhibits, in the limit of small effective Planck constant, a transition from quantum to classical behavior, in agreement with the correspondence principle. We also discuss parameter values suitable for implementation of the quantum ratchet effect with cold atoms in optical lattices.Comment: Significant changes: Several text improvements and new results. Figure 2 modified. Figure 4 adde

    Deterministic ratchets: route to diffusive transport

    Full text link
    The rectification efficiency of an underdamped ratchet operated in the adiabatic regime increases according to a scaling current-amplitude curve as the damping constant approaches a critical threshold; below threshold the rectified signal becomes extremely irregular and eventually its time average drops to zero. Periodic (locked) and diffusive (fully chaotic) trajectories coexist on fine tuning the amplitude of the input signal. The transition from regular to chaotic transport in noiseless ratchets is studied numerically.Comment: 9 pages, 5 figures, to be published in Phys. Rev.
    • …
    corecore