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Rectifying fluctuations in an optical lattice
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We have realized a Brownian motor by using cold atoms in a dissipative optical lattice as a model
system. In our experiment the optical potential is spatially symmetric and the time-symmetry of the
system is broken by applying appropriate zero-mean ac forces. We identify a regime of rectification
of forces and a regime of rectification of fluctuations, the latter corresponding to the realization of
a Brownian motor.

PACS numbers: 05.45.-a, 42.65.Es, 32.80.Pj

Noise is unavoidably present in every physical, chem-
ical and biological process. From electronic devices to
laser action, from chemical reactions to the motion of
bacteria, noise modifies the process by introducing ran-
dom fluctuations in the observed dynamics.

Noise is often treated as a nuisance to be reduced as
much as possible. Consider for example an electronic
device, typically an amplifier, with an input and an out-
put. It is often believed that the only way to improve the
signal-to-noise ratio (SNR) at the output of the device is
to reduce the noise at its input. This is not necessarily
true: for a nonlinear device the provision of additional
noise to the input signal may increase the SNR of the
output signal, a phenomenon known as stochastic reso-
nance and observed in a variety of processes in electron-
ics, physics, chemistry and biology [1].

Noise also plays a central role in Brownian motors [2],
the topic of the present work, which recently attracted
much interest [3, 4, 5, 6, 7, 8, 9] as it is believed that they
may constitute a model for biological molecular motors
[10]. Consider a sample of Brownian particles diffusing
through a periodic potential in the presence of oscillat-
ing forces of zero average. A net current of particles can
be induced by breaking the symmetry of the system, re-
alizing in this way the somewhat surprising situation of
directed motion in a macroscopically flat potential in the
absence of applied bias forces. Whenever the net current
of particles arises from the rectification of fluctuations

the directed motion corresponds to the realisation of a
so-called Brownian motor.

In this work we realize a Brownian motor by using
cold atoms in a dissipative optical lattice as a model sys-
tem. The optical potential is spatially symmetric, and
the time-symmetry of the system is broken by applying
appropriate zero-mean ac forces. We identify a regime
of rectification of the fluctuations, corresponding to the
realization of a Brownian motor, and a regime of recti-
fication of the forces. In the regime of rectification of
the fluctuations, the current amplitude vanishes in the
absence of noise, and shows a stochastic resonance-like
behavior at increasing noise amplitude, therefore con-
firming that our device acts as a fluctuations rectifier.
In the regime of rectification of the forces, the directed
motion of the atoms through the lattice is only due to

deterministic forces. In this regime the noise acts as a
nuisance and correspondingly the current decreases for
increasing amplitude of the noise.
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FIG. 1: Lattice beams configuration. Left: arrangement of
the four beams in the umbrellalike configuration. Only the po-
larization of beam 1 is shown. Right: polarizations of beams
2–4 as seen by looking towards the −z direction.

The periodic potential used in this work is a 3D opti-
cal lattice [11] determined by the interference of four laser

beams (beams 1–4, with wavevectors ~k1–~k4), arranged in
the so-called umbrellalike configuration [12], as sketched
in Fig. 1. One laser beam (beam 1) propagates in the
z-direction. The three other laser beams propagate in
the opposite direction, and are arranged along the edges
of a triangular pyramid having the z-direction as axis,
with the azimuthal angle between each pair of beams
equal to 2π/3. All beams are linearly polarized, with the
polarization of beam 1 in the x-direction. The linear po-

larization of beam j is chosen as ~ǫj = ~k1 ∧ ~kj/k2, i.e. ~ǫj

is orthogonal to the plane defined by ~k1 and ~kj and ori-
ented as shown in Fig. 1 (right). The angle between the
beam j, with j =2–4, and the z axis is θ = 30◦, and we
have made the following choice for the fields amplitudes:
E1 = E0, E2 = E3 = E0

√
3 + cos2 θ/6 cos θ = E0

√
5/6

and E4 = E0/3. The interference of the laser fields pro-
duces a periodic and spatially symmetric optical poten-
tial, with the potential minima associated with pure cir-
cular (σ+ or σ−) polarization of the light [12]. For an
atom with a Fg = F → Fe = F + 1 transition, the
optical potential consists precisely of 2F + 1 potentials,
one for each ground state sublevel of the atom. Transi-
tions between different potentials are produced by opti-
cal pumping processes, which transfer an atom from one

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/1677965?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arXiv.org/abs/cond-mat/0512551v1


2

ground state sublevel to another one. As optical pumping
is a stochastic process, this introduces fluctuations in the
atomic dynamics. These fluctuations result in a random
walk through the optical lattice, and indeed normal dif-
fusion has been observed for the atomic cloud expanding
in the lattice for a broad range of interaction parameters
[11].

In a spatially symmetric structure directed motion can
be induced by breaking the time-symmetry of the system
[4]. With this aim in mind, we apply a zero-mean ac force
composed of two harmonics

F (t) = F0 [A cos(ωt) + B cos(2ωt − φ)] . (1)

For φ 6= nπ, with n integer, the force F (t) breaks the
time-symmetry of the system. To be precise, for an
arbitrary choice of the phase φ the force F (t) breaks
the generalized-parity symmetry (x, p, t) → (−x,−p, t +
π/ω), and for φ 6= nπ the residual time-reversal symme-
try (x, t) → (x,−p,−t) is also broken [4]. Experimen-
tally, to introduce a homogenous time-dependent force
we apply a phase modulation to the beam 1 of the form

α(t) = α0

[

A cos(ωt) +
B

4
cos(2ωt − φ)

]

. (2)

In the accelerated frame in which the optical lattice is
stationary the phase modulation results in an inertial
force F of the form of Eq. 1 with F0 = mω2α0/2k,
where m is the atomic mass [13]. In the present work,
the phase difference between the two harmonics is kept
fixed at φ = π/2, so as to break the time-symmetry of
the system and induce directed motion. The coefficients
A and B of the two harmonics will be taken as equal:
A = B = 1.

Our system differs from the usual models for Brown-
ian motors mainly in one respect: here we do not have
a single potential, but a potential for each ground state
of the atom, and both fluctuations in the atomic dynam-
ics and the friction are associated with optical pump-
ing between ground states, i.e. optical pumping between
different optical potentials [11]. Because of this differ-
ence, we performed a numerical analysis prior to the ex-
perimental work. For simplicity, our numerical analy-
sis is limited to a 1D lin⊥lin optical lattice [11] and a
Jg = 1/2 → Je = 3/2 atom. This lattice beam geometry
is the 1D version of our current experimental setup, and
corresponds to two counterpropagating laser beams with
orthogonal linear polarizations. In this case there are
only two ground state sublevels |g,±〉, which correspond
to two sinusoidal optical potentials U±(z) in phase op-
position. These potentials are shown in Fig. 2, together
with a (stochastic) optical pumping process which trans-
fers an atom from one potential to the other inducing
fluctuations in the atomic dynamics. The Fokker-Planck-
type equation describing the time evolution of the semi-
classical phase-space distribution has been derived in Ref.
[14]. As also shown there, this equation can be efficiently
integrated by using Monte Carlo simulations techniques.

U+

U−

|e>

FIG. 2: Optical potentials U± for a Jg = 1/2 → Je = 3/2
atom in a 1D lin⊥lin optical lattice. A (stochastic) process of
optical pumping transferring, via an excited state, an atom
from a potential to the other one is also shown. The filled
(empty) circle represents the atom in the |g, +〉 (|g,−〉) state.

In our calculations a phase modulation of one of the
lattice beams of the form of Eq. (2) with φ = π/2 is
included to generate the appropriate ac force. We made
Monte Carlo simulations for the atomic dynamics and
derived the mean atomic velocity as a function of the
amplitude of the phase modulation, for a given optical
potential depth and modulation frequency, at various op-
tical pumping rates. From the numerical results, shown
in Fig. 3, it appears that a current is generated, a re-
sult which stimulates our experimental work. The depen-
dence of the current amplitude on the optical pumping
rate evidenced in the numerical simulations will be dis-
cussed once the experimental findings are presented. It
should be noted that in reporting the numerical results
(and the same will apply to the experimental findings)
we do not distinguish between velocities in the labora-
tory frame, defined by the z coordinate, and in the ac-
celerated frame, defined by z′ = z − α(t)/(2k), in which
the optical potential is stationary. This because the two
velocities coincide once averaged over time scales T much
larger than the ac forces period. The typical frequency
ω considered in this work is about 100 kHz, while the
typical averaging time is larger than 1 ms, so the average
velocities in the laboratory and accelerated frames are
equal.

In our experiment cesium atoms are cooled and
trapped in a magneto-optical trap. At a given instant the
trap is switched off and the four lattice beams are turned
on. The lattice fields are red detuned with respect to the
Fg = 4 → Fe = 5 D2 line. The phase modulation α(t),
see Eq. (2), of beam 1 is then slowly turned on. The mod-
ulating signal is obtained by adding the output signals of
two phase-locked oscillators, with oscillation frequencies
ω and 2ω and phase difference φ = π/2. We observed the
motion of the atoms in the lattice by direct imaging of the
atomic cloud with a CCD camera. Consistenly with pre-
vious work [4, 13, 15] we observed directed motion of the
atoms through the lattice along the z direction, follow-
ing the time-symmetry breaking. We observed a uniform
motion of the center of mass of the atomic cloud, and we
derived from the experimental data a mean atomic veloc-
ity. Several sets of measurements were made for differ-
ent choices of the lattice beams’ parameters (intensity I
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and detuning ∆ from atomic resonance), and modulation
amplitude α0. The lattice beams’ intensity and detuning
were varied simultaneously to keep constant the depth
of the optical potential U0 ∝ I/∆, as verified by pump-
probe spectroscopy, while changing the optical pumping
rate Γ′ ∝ I/∆2. In this way we have measured, for a
given optical potential, the average atomic velocity as a
function of the modulation amplitude, i.e. as a function
of the ac force amplitude, for different optical pumping
rates, i.e. for different noise levels.
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FIG. 3: Results of semiclassical Monte Carlo simulations for
a sample of n = 104 atoms in a 1D lin⊥lin optical lattice.
The average atomic velocity, in units of the recoil velocity
vr = ~k/m, is shown as a function of the amplitude of the
phase modulation. Different data sets correspond to different
optical pumping rates Γ’. The lines are guides for the eyes.
The parameters of the calculations are: the depth of the op-
tical potential is U0 = 200/3 · Er, with Er the recoil energy;
the coefficients of the harmonics composing the phase modu-
lation, see Eq. (2), are equal: A = B = 1, the relative phase
between the two harmonics is φ = π/2, and the frequency of
the modulation is ω = 0.92 · ωv, where ωv is the vibrational
frequency of the atoms at the bottom of the well.

Results of our measurements are reported in Fig. 4.
The experimental data show the same behavior as our
numerical results (see Fig. 3). For small amplitudes of
the ac force the average atomic velocity is an increasing
function of the force amplitude, with the atoms moving
in the positive z direction. At larger amplitudes of the
ac force the velocity decreases, and a current reversal is
observed, with the atomic cloud moving in the negative
z direction. We note that the numerical simulations (see
Fig. 3) show that at large ac forces amplitude the current
reaches a maximum and then decreases at increasing am-
plitude of the ac forces. This has a simple explanation [5]:
for very large amplitudes of the applied ac forces the in-
fluence of the periodic potential on the atomic dynamics
becomes negligible, and the current of atoms decreases.

This behavior has not been observed in the experiment
because, due to technical limitations, we were not able
to explore modulation amplitudes α0 large enough.
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FIG. 4: Experimental results for the mean atomic velocity as
a function of the amplitude of the phase modulation. The top
graph includes all our experimental results, while the bottom
one evidences the region of small ac forces. The optical po-
tential is the same for all measurements, and corresponds to
a vibrational frequency ωv = 2π ·144 kHz. Different data sets
correspond to different detunings ∆, i.e. to different optical
pumping rates as the optical potential is kept constant. The
data are labelled by the quantity Γs = [ωv/(2π)]2/∆ which
is proportional to the optical pumping rate. The modulation
frequency is ω = 2π · 130kHz. The values for the velocity
are expressed in terms of the recoil velocity vr, equal to 3.52
mm/s for the the Cs D2 line. Each datapoint corresponds
to an average over five images of the atomic cloud. In plot-
ting the data sets for the different pumping rates, adjacent
averaging on each data set has also been made. As unwanted
consequence, a small vertical shift (positive or negative de-
pending on the data set) for the datapoints close to α0 = 0
has been introduced by the averaging procedure. Errorbars
are of the order of the size of the datapoints.

It is important to distinguish the different mechanisms
leading to current generation. For large amplitudes of
the applied force, the motion can be attributed to deter-
ministic forces and corresponds to force rectification by
harmonic mixing: in a nonlinear medium the two har-
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monics, of frequency ω and 2ω and phase difference φ,
are mixed and result in a rectified force F̄ ∝ sin φ. In our
experiment the nonlinearity of the medium is the nonlin-
earity of the optical potential. In this regime the noise
does not play any constructive role in the generation of
the current of atoms. On the contrary, the noise dis-
turbs the process of rectification of the forces, and, as it
appears from our experimental data, for large ac forces
the average atomic velocity decreases for increasing op-
tical pumping rate, i.e. for increasing level of the noise,
in agreement with our numerical simulations (Fig. 3).
We therefore conclude that for large applied forces our
experimental realization does not correspond to a Brow-
nian motor.

Consider now the case of small applied ac forces. As
evidenced by our experimental data (Fig. 4, bottom) the
dependence of the average atomic velocity on the opti-
cal pumping rate is completely different from the one
observed at large ac forces. For small values of the opti-
cal pumping rate the current amplitude is an increasing
function of the pumping rate, and the current vanishes in
the limit of vanishing optical pumping rate, as shown by
the filled circles datapoints of Fig. 4 (bottom) which cor-
respond to the smallest value of the optical pumping rate
explored in our experiment. Finally, at larger pumping
rates the current reaches a maximum and then decreases.
This stochastic resonance-like behavior is the demonstra-
tion that in the reverse current regime our optical lattice
acts as a fluctuations rectifier, i.e. we realized a Brownian
motor.

In conclusion, in this work we presented the realization
of a Brownian motor by using cold atoms in a dissipa-
tive optical lattice as a model system. We considered
a spatially symmetric optical lattice, and we broke the
time-symmetry of the system by applying an appropri-

ate zero mean ac force. A current of atoms is generated
as a result of the time-symmetry breaking. We identify
two different regimes, depending on the amplitude of the
applied ac force. For large amplitudes the current is pro-
duced by deterministic forces, and can be traced back
to the rectification by harmonic mixing of the applied
oscillating forces. In this regime the noise acts as a dis-
turbance for the rectification process, and correspond-
ingly the current amplitude is a decreasing function of
the noise level. At small amplitude of the ac force, the
current is reversed and is due to the rectification of fluc-
tuations, with the current amplitude showing a stochas-
tic resonance-like dependence on the noise level. This
corresponds to the realization of a Brownian motor.

The present work also shows the important role that
optical lattices can play in generating models for statis-
tical physics. With respect to solid state devices [8] or
laser tweezer setups [9], optical lattices offer a wider tun-
ability. The depth of the defect-free optical potentials
can be controlled by simply changing the laser parame-
ters, and by changing the arrangement and the number of
laser beams both periodic and quasi-periodic lattices of
different dimension, lattice spacing and lattice geometry
can be obtained. Furthermore, the laser parameters also
allow a precise control of the optical pumping rate, which
can be varied over a very broad range, and also eventually
be completed suppressed. This allows the investigation
of the vast field of noise-induced phenomena. Among the
phenomena identified theoretically that can be explored
by our current set-up we mention: dissipation-induced
symmetry breaking [7], giant acceleration of free diffu-
sion in tilted lattices [16], Levy walks and anomalous
diffusion [17]. Furthermore, in the limit of far detuning
from atomic resonance, i.e. by suppressing dissipation,
deterministic (chaotic) ratchets [18] can be investigated.
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