5,059 research outputs found

    Secondary metabolites of the argan tree (Morocco) may have disease prevention properties

    Get PDF
    The argan tree (Argania spinosa L. Skeels) is native to Morocco, where after the Holly oak it constitutes the second most common tree in the country. Recent studies suggest that dietary argan oil, an endemic seed oil from argan fruits, may have a relevant role in disease prevention, and its consumption could protect against atherosclerosis and cancer. Unfortunately, in less than a century, more than a third of the forest has disappeared. It is therefore imperative to improve the tree\'s production potential so that it can regain its key position in the agricultural systems of the region. On the basis of ethnobotanical knowledge, researchers are screening metabolites of this rare plant to identify bioactive compounds for the development of new therapeutic agents and food supplements. This includes studies on secondary metabolites with chemopreventive activities. In this review, a complete outline of components (triglycerides, unsaponifiable, phenolic antioxidants and aroma constituents) are described. Finally, a discussion of the biological functions of the polar and non-polar A. spinosa products which have been evaluated using a range of in vitro bioassays are described.African Journal of Biotechnology Vol. 4 (5), pp. 381-388, 200

    Higher order glass-transition singularities in colloidal systems with attractive interactions

    Full text link
    The transition from a liquid to a glass in colloidal suspensions of particles interacting through a hard core plus an attractive square-well potential is studied within the mode-coupling-theory framework. When the width of the attractive potential is much shorter than the hard-core diameter, a reentrant behavior of the liquid-glass line, and a glass-glass-transition line are found in the temperature-density plane of the model. For small well-width values, the glass-glass-transition line terminates in a third order bifurcation point, i.e. in a A_3 (cusp) singularity. On increasing the square-well width, the glass-glass line disappears, giving rise to a fourth order A_4 (swallow-tail) singularity at a critical well width. Close to the A_3 and A_4 singularities the decay of the density correlators shows stretching of huge dynamical windows, in particular logarithmic time dependence.Comment: 19 pages, 12 figures, Phys. Rev. E, in prin

    How does the relaxation of a supercooled liquid depend on its microscopic dynamics?

    Full text link
    Using molecular dynamics computer simulations we investigate how the relaxation dynamics of a simple supercooled liquid with Newtonian dynamics differs from the one with a stochastic dynamics. We find that, apart from the early beta-relaxation regime, the two dynamics give rise to the same relaxation behavior. The increase of the relaxation times of the system upon cooling, the details of the alpha-relaxation, as well as the wave vector dependence of the Edwards-Anderson-parameters are independent of the microscopic dynamics.Comment: 6 pages of Latex, 4 figure

    Glasslike Arrest in Spinodal Decomposition as a Route to Colloidal Gelation

    Get PDF
    Colloid-polymer mixtures can undergo spinodal decomposition into colloid-rich and colloid-poor regions. Gelation results when interconnected colloid-rich regions solidify. We show that this occurs when these regions undergo a glass transition, leading to dynamic arrest of the spinodal decomposition. The characteristic length scale of the gel decreases with increasing quench depth, and the nonergodicity parameter exhibits a pronounced dependence on scattering vector. Mode coupling theory gives a good description of the dynamics, provided we use the full static structure as input.Comment: 14 pages, 4 figures; replaced with published versio

    Confirmation of Anomalous Dynamical Arrest in attractive colloids: a molecular dynamics study

    Full text link
    Previous theoretical, along with early simulation and experimental, studies have indicated that particles with a short-ranged attraction exhibit a range of new dynamical arrest phenomena. These include very pronounced reentrance in the dynamical arrest curve, a logarithmic singularity in the density correlation functions, and the existence of `attractive' and `repulsive' glasses. Here we carry out extensive molecular dynamics calculations on dense systems interacting via a square-well potential. This is one of the simplest systems with the required properties, and may be regarded as canonical for interpreting the phase diagram, and now also the dynamical arrest. We confirm the theoretical predictions for re-entrance, logarithmic singularity, and give the first direct evidence of the coexistence, independent of theory, of the two coexisting glasses. We now regard the previous predictions of these phenomena as having been established.Comment: 15 pages,15 figures; submitted to Phys. Rev.

    Molecular dynamics simulation of the fragile glass former ortho-terphenyl: a flexible molecule model

    Full text link
    We present a realistic model of the fragile glass former orthoterphenyl and the results of extensive molecular dynamics simulations in which we investigated its basic static and dynamic properties. In this model the internal molecular interactions between the three rigid phenyl rings are described by a set of force constants, including harmonic and anharmonic terms; the interactions among different molecules are described by Lennard-Jones site-site potentials. Self-diffusion properties are discussed in detail together with the temperature and momentum dependencies of the self-intermediate scattering function. The simulation data are compared with existing experimental results and with the main predictions of the Mode Coupling Theory.Comment: 20 pages and 28 postscript figure

    Dielectronic Recombination (via N=2 --> N'=2 Core Excitations) and Radiative Recombination of Fe XX: Laboratory Measurements and Theoretical Calculations

    Get PDF
    We have measured the resonance strengths and energies for dielectronic recombination (DR) of Fe XX forming Fe XIX via N=2 --> N'=2 (Delta_N=0) core excitations. We have also calculated the DR resonance strengths and energies using AUTOSTRUCTURE, HULLAC, MCDF, and R-matrix methods, four different state-of-the-art theoretical techniques. On average the theoretical resonance strengths agree to within <~10% with experiment. However, the 1 sigma standard deviation for the ratios of the theoretical-to-experimental resonance strengths is >~30% which is significantly larger than the estimated relative experimental uncertainty of <~10%. This suggests that similar errors exist in the calculated level populations and line emission spectrum of the recombined ion. We confirm that theoretical methods based on inverse-photoionization calculations (e.g., undamped R-matrix methods) will severely overestimate the strength of the DR process unless they include the effects of radiation damping. We also find that the coupling between the DR and radiative recombination (RR) channels is small. We have used our experimental and theoretical results to produce Maxwellian-averaged rate coefficients for Delta_N=0 DR of Fe XX. For kT>~1 eV, which includes the predicted formation temperatures for Fe XX in an optically thin, low-density photoionized plasma with cosmic abundances, our experimental and theoretical results are in good agreement. We have also used our R-matrix results, topped off using AUTOSTRUCTURE for RR into J>=25 levels, to calculate the rate coefficient for RR of Fe XX. Our RR results are in good agreement with previously published calculations.Comment: To be published in ApJS. 65 pages with 4 tables and lots of figure

    Comparative simulation study of colloidal gels and glasses

    Full text link
    Using computer simulations, we identify the mechanisms causing aggregation and structural arrest of colloidal suspensions interacting with a short-ranged attraction at moderate and high densities. Two different non-ergodicity transitions are observed. As the density is increased, a glass transition takes place, driven by excluded volume effects. In contrast, at moderate densities, gelation is approached as the strength of the attraction increases. At high density and interaction strength, both transitions merge, and a logarithmic decay in the correlation function is observed. All of these features are correctly predicted by mode coupling theory

    Evidence for Unusual Dynamical Arrest Scenario in Short Ranged Colloidal Systems

    Full text link
    Extensive molecular dynamics simulation studies of particles interacting via a short ranged attractive square-well (SW) potential are reported. The calculated loci of constant diffusion coefficient DD in the temperature-packing fraction plane show a re-entrant behavior, i.e. an increase of diffusivity on cooling, confirming an important part of the high volume-fraction dynamical-arrest scenario earlier predicted by theory for particles with short ranged potentials. The more efficient localization mechanism induced by the short range bonding provides, on average, additional free volume as compared to the hard-sphere case and results in faster dynamics.Comment: 4 pages, 3 figure

    Asymptotic laws for tagged-particle motion in glassy systems

    Full text link
    Within the mode-coupling theory for structural relaxation in simple systems the asymptotic laws and their leading-asymptotic correction formulas are derived for the motion of a tagged particle near a glass-transition singularity. These analytic results are compared with numerical ones of the equations of motion evaluated for a tagged hard sphere moving in a hard-sphere system. It is found that the long-time part of the two-step relaxation process for the mean-squared displacement can be characterized by the α\alpha -relaxation-scaling law and von Schweidler's power-law decay while the critical-decay regime is dominated by the corrections to the leading power-law behavior. For parameters of interest for the interpretations of experimental data, the corrections to the leading asymptotic laws for the non-Gaussian parameter are found to be so large that the leading asymptotic results are altered qualitatively by the corrections. Results for the non-Gaussian parameter are shown to follow qualitatively the findings reported in the molecular-dynamics-simulations work by Kob and Andersen [Phys. Rev. E 51, 4626 (1995)]
    • …
    corecore