16,126 research outputs found

    Fluctuations of the Casimir-Polder force between an atom and a conducting wall

    Full text link
    We consider the quantum fluctuations of the Casimir-Polder force between a neutral atom and a perfectly conducting wall in the ground state of the system. In order to obtain the atom-wall force fluctuation we first define an operator directly associated to the force experienced by the atom considered as a polarizable body in an electromagnetic field, and we use a time-averaged force operator in order to avoid ultraviolet divergences appearing in the fluctuation of the force. This time-averaged force operator takes into account that any measurement involves a finite time. We also calculate the Casimir-Polder force fluctuation for an atom between two conducting walls. Experimental observability of these Casimir-Polder force fluctuations is also discussed, as well as the dependence of the relative force fluctuation on the duration of the measurement.Comment: 6 page

    Casimir-Polder forces, boundary conditions and fluctuations

    Full text link
    We review different aspects of the atom-atom and atom-wall Casimir-Polder forces. We first discuss the role of a boundary condition on the interatomic Casimir-Polder potential between two ground-state atoms, and give a physically transparent interpretation of the results in terms of vacuum fluctuations and image atomic dipoles. We then discuss the known atom-wall Casimir-Polder force for ground- and excited-state atoms, using a different method which is also suited for extension to time-dependent situations. Finally, we consider the fluctuation of the Casimir-Polder force between a ground-state atom and a conducting wall, and discuss possible observation of this force fluctuation.Comment: 5 page

    Enhanced van der Waals interaction at interfaces

    Full text link
    Using a recently obtained (general) formula for the interaction energy between an excited and a ground-state atom (Sherkunov Y 2007 Phys. Rev. A 75 012705), we consider the interaction energy between two such atoms near the interface between two media. We demonstrate that under the circumstances of the resonant coupling of the excited atom to the surface polariton mode of a vacuum-medium system the nonretarded atom*-atom interaction energy can be enhanced by (several) orders of magnitude in comparison with the van der Waals interaction energy of the two isolated atoms.Comment: 8 pages, 5 figures, local-field corrections included and improved presentatio

    Saddle Points and Stark Ladders: Exact Calculations of Exciton Spectra in Superlattices

    Full text link
    A new, exact method for calculating excitonic absorption in superlattices is described. It is used to obtain high resolution spectra showing the saddle point exciton feature near the top of the miniband. The evolution of this feature is followed through a series of structures with increasing miniband width. The Stark ladder of peaks produced by an axial electric field is investigated, and it is shown that for weak fields the line shapes are strongly modified by coupling to continuum states, taking the form of Fano resonances. The calculated spectra, when suitably broadened, are found to be in good agreement with experimental results.Comment: 9 pages Revtex v3.0, followed by 4 uuencoded postscript figures, SISSA-CM-94-00

    Multi-wavelength visibility measurements of the red giant R Doradus

    Get PDF
    We present visibility measurements of the nearby Mira-like star R Doradus taken over a wide range of wavelengths (650--990 nm). The observations were made using MAPPIT (Masked APerture-Plane Interference Telescope), an interferometer operating at the 3.9-m Anglo-Australian Telescope. We used a slit to mask the telescope aperture and prism to disperse the interference pattern in wavelength. We observed in R Dor strong decreases in visibility within the TiO absorption bands. The results are in general agreement with theory but differ in detail, suggesting that further work is needed to refine the theoretical models.Comment: 8 pages; SPIE Conf. 4006 "Interferometry in Optical Astronomy

    Local and Global Casimir Energies for a Semitransparent Cylindrical Shell

    Get PDF
    The local Casimir energy density and the global Casimir energy for a massless scalar field associated with a λΎ\lambda\delta-function potential in a 3+1 dimensional circular cylindrical geometry are considered. The global energy is examined for both weak and strong coupling, the latter being the well-studied Dirichlet cylinder case. For weak-coupling,through O(λ2)\mathcal{O}(\lambda^2), the total energy is shown to vanish by both analytic and numerical arguments, based both on Green's-function and zeta-function techniques. Divergences occurring in the calculation are shown to be absorbable by renormalization of physical parameters of the model. The global energy may be obtained by integrating the local energy density only when the latter is supplemented by an energy term residing precisely on the surface of the cylinder. The latter is identified as the integrated local energy density of the cylindrical shell when the latter is physically expanded to have finite thickness. Inside and outside the delta-function shell, the local energy density diverges as the surface of the shell is approached; the divergence is weakest when the conformal stress tensor is used to define the energy density. A real global divergence first occurs in O(λ3)\mathcal{O}(\lambda^3), as anticipated, but the proof is supplied here for the first time; this divergence is entirely associated with the surface energy, and does {\em not} reflect divergences in the local energy density as the surface is approached.Comment: 28 pages, REVTeX, no figures. Appendix added on perturbative divergence

    Sub-leading contributions to the black hole entropy in the brick wall approach

    Get PDF
    [Abridged] We compute the canonical entropy of a quantum scalar field around static and spherically symmetric black holes through the brick wall approach at the higher orders (in fact, up to the sixth order in \hbar) in the WKB approximation. We explicitly show that the brick wall model generally predicts corrections to the Bekenstein-Hawking entropy in all spacetime dimensions. In four dimensions, we find that the corrections to the Bekenstein-Hawking entropy are of the form (A^n \log A), while, in six dimensions, the corrections behave as (A^m + A^n \log A), where A denotes the area of the black hole event horizon, and (m, n) < 1. We compare our results with the corrections to the Bekenstein-Hawking entropy that have been obtained through the other approaches in the literature, and discuss the implications.Comment: 21 pages, Revtex 4; Final verson - 22 pages, References added, Accepted in Phys. Rev.
    • 

    corecore