14 research outputs found
Modeling of chronic radiation-induced cystitis in mice
Radiation cystitis (RC), a severe inflammatory bladder condition, develops as a side effect of pelvic radiation therapy in cancer patients. There are currently no effective therapies to treat RC, in part from the lack of preclinical model systems. In this study, we developed a mouse model for RC and used a Small Animal Radiation Research Platform to simulate the targeted delivery of radiation as used with human patients.
To induce RC, C3H mice received a single radiation dose of 20 Gy delivered through 2 beams. Mice were subjected to weekly micturition measurements to assess changes in urinary frequency. At the end of the study, bladder tissues were processed for histology.
Radiation was well-tolerated; no change in weight was observed in the weeks after treatment, and there was no hair loss at the irradiation sites. Starting at 17 weeks after treatment, micturition frequency was significantly higher in irradiated mice versus control animals. Pathological changes include fibrosis, inflammation, urothelial thinning, and necrosis. At a site of severe insult, we observed telangiectasia, absence of uroplakin-3 and E-cadherin relocalization.
We developed an RC model that mimics the human pathology and functional changes. Furthermore, radiation exposure attenuates the urothelial integrity long-term, allowing for potential continuous irritability of the bladder wall from exposure to urine. Future studies will focus on the underlying molecular changes associated with this condition and investigate novel treatment strategies
Identification of Molecular Mechanisms in Radiation Cystitis: Insights from RNA Sequencing
Pelvic cancer survivors who were treated with radiation therapy are at risk for developing (hemorrhagic) radiation cystitis (RC) many years after completion of radiation therapy. Patients with RC suffer from lower urinary tract symptoms, including frequency, nocturia, pelvic pain, and incontinence. In advanced stages, hematuria can occur, potentially escalating to life-threatening levels. Current therapeutic options for RC are limited, partly due to ethical concerns regarding bladder biopsy in patients with fragile bladder tissue. This study aimed to leverage our established preclinical model to elucidate the molecular pathways implicated in radiation-induced tissue changes in the bladder. Female C57Bl/6 mice received a single dose of 40 Gy using CT-guided imaging and a two-beam irradiation approach using the SARRP irradiator. Bladders from irradiated and age-matched littermate controls were harvested at 1 week [n = 5/group] or 6 months [n = 5/group] after irradiation, RNA was harvested, and mRNA sequencing was performed at paired-end 150bp on the Illumina NovaSeq6000 with a target of 30 million reads per sample. Following RNA sequencing, thorough bioinformatics analysis was performed using iPathwayGuide v2012 (ADVAITA Bioinformatics). Findings of the RNA sequencing were validated using qPCR analysis. At 1 week post-irradiation, altered gene expression was detected in genes involved in DNA damage response, apoptosis, and transcriptional regulation. By 6 months post-irradiation, significant changes in gene expression were observed in inflammation, collagen catabolism, and vascular health. Affected pathways included the p53, JAK-STAT, and PI3K-Akt pathways. These findings were validated in vivo in bladder tissues from our preclinical model. This is the first study to determine the molecular changes in the bladder in response to radiation treatment. We have successfully pinpointed several pathways and specific genes that undergo modification, thereby contributing to the progression of radiation cystitis. These insights enhance our understanding of the pathophysiology of radiation cystitis and may ultimately pave the way to the identification of potential new therapeutic targets
Altered Angiogenic Growth Factors in Urine of Prostate Cancer Survivors With Radiation History and Radiation Cystitis
© 2018 Elsevier Inc. Objective: To determine if the vascular damage in bladders of prostate cancer (PCa) survivors with radiation cystitis can be detected through altered angiogenic growth factors in urine. Methods: Urine samples from PCa survivors with a history of external beam radiation therapy were tested for a panel of angiogenic growth factors by Luminex assay. Urine creatinine levels were measured through high performance liquid chromatography. Through a patient survey, data on patient demographics, radiation history, and urinary symptoms were collected. Results: Hepatocyte growth factor (HGF), placental growth factor (PlGF), and vascular endothelial growth factor (VEGF) were altered in urine of PCa survivors with a history of radiation therapy. HGF and PlGF were elevated in response to irradiation, while VEGF had a decreasing trend. Within the irradiated population, HGF was also increased in patients diagnosed with radiation cystitis and patients with hematuria. PlGF and VEGF
Modeling of chronic radiation-induced cystitis in mice
Purpose: Radiation cystitis (RC), a severe inflammatory bladder condition, develops as a side effect of pelvic radiation therapy in cancer patients. There are currently no effective therapies to treat RC, in part from the lack of preclinical model systems. In this study, we developed a mouse model for RC and used a Small Animal Radiation Research Platform to simulate the targeted delivery of radiation as used with human patients.
Methods and materials: To induce RC, C3H mice received a single radiation dose of 20 Gy delivered through 2 beams. Mice were subjected to weekly micturition measurements to assess changes in urinary frequency. At the end of the study, bladder tissues were processed for histology.
Results: Radiation was well-tolerated; no change in weight was observed in the weeks after treatment, and there was no hair loss at the irradiation sites. Starting at 17 weeks after treatment, micturition frequency was significantly higher in irradiated mice versus control animals. Pathological changes include fibrosis, inflammation, urothelial thinning, and necrosis. At a site of severe insult, we observed telangiectasia, absence of uroplakin-3 and E-cadherin relocalization.
Conclusions: We developed an RC model that mimics the human pathology and functional changes. Furthermore, radiation exposure attenuates the urothelial integrity long-term, allowing for potential continuous irritability of the bladder wall from exposure to urine. Future studies will focus on the underlying molecular changes associated with this condition and investigate novel treatment strategies
Rapid Detection of Zika Virus in Urine Samples and Infected Mosquitos by Reverse Transcription-Loop-Mediated Isothermal Amplification
Abstract Infection with Zika virus (ZIKV) is of growing concern since infection is associated with the development of congenital neurological disease. Quantitative reverse transcription PCR (qRT-PCR) has been the standard for ZIKV detection; however, Reverse Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) may allow for faster and cheaper testing. Studies have suggested that ZIKV detection in urine is more sensitive and has a longer window of detection compared to serum and saliva. The objective of this study was to develop a urine diagnostic test that could be completed in under 30 minutes. Urine samples spiked with ZIKV or dengue virus were tested using RT-LAMP as well as by conventional quantitative qRT-PCR. These techniques were then validated using crude lysates made from ZIKV infected mosquitoes in addition to urine and serum samples from ZIKV infected patients. RT-LAMP specifically detected ZIKV in urine and serum for ZIKV infected patients and crude mosquito lysates. This test was performed in under 30 minutes and did not require RNA extraction from urine nor mosquitos. This approach could be used for monitoring of exposed individuals, especially pregnant women, couples wanting to conceive, or individuals with suspicious symptoms as well as surveillance of mosquito populations
Development of an interstitial cystitis risk score for bladder permeability
<div><p>Background</p><p>Interstitial cystitis/bladder pain syndrome (IC) is a multifactorial syndrome of severe pelvic and genitalia pain and compromised urinary function; a subset of IC patients present with Hunner’s lesions or ulcers on their bladder walls (UIC). UIC is diagnosed by cystoscopy, which may be quite painful. The objective of this study was to determine if a calculated Bladder Permeability Defect Risk Score (BP-RS) based on non-invasive urinary cytokines could discriminate UIC patients from controls and IC patients without Hunner’s ulcers.</p><p>Methods</p><p>A national crowdsourcing effort targeted IC patients and age-matched controls to provide urine samples. Urinary cytokine levels for GRO, IL-6, and IL-8 were determined using a Luminex assay.</p><p>Results</p><p>We collected 448 urine samples from 46 states consisting of 153 IC patients (147 female, 6 male), of which 54 UIC patients (50 females, 4 male), 159 female controls, and 136 male controls. A defined BP-RS was calculated to classify UIC, or a bladder permeability defect etiology, with 89% validity.</p><p>Conclusions</p><p>The BP-RS Score quantifies UIC risk, indicative of a bladder permeability defect etiology in a subset of IC patients. The Bladder Permeability Defect Risk Score is the first validated urine biomarker assay for interstitial cystitis/bladder pain syndrome.</p></div
Consolidated standards of reporting trials flow diagram for study numbers.
<p>UIC = IC with Hunner’s lesions; NUIC = IC without Hunner’s lesions.</p
Urinary cytokine levels by group.
<p><b>A)</b> Mean and SEM values for urine cytokines GRO, IL-6, and IL-8. <b>B-G)</b> Urinary levels of cytokines GRO, IL-6, and IL-8 in groups Control and NUIC compared to UIC <b>(B-D)</b> or control compared to NUIC compared to UIC <b>(E-F)</b>. Error bars are SEM. Statistical differences were determined using Mann-Whitney test <b>(B-G)</b> or Kruskal-Wallis ANOVA <b>(E-G)</b>. * indicates p<0.05, ** indicates p<0.01, *** indicates p<0.001, **** indicates p<0.0001.</p
Optimal parameters that resulted in highest OOB score for training set.
<p>Optimal parameters that resulted in highest OOB score for training set.</p