790 research outputs found

    A comparison between elite swimmers and kayakers on upper body push and pull strength and power performance

    Get PDF
    The aim of the present study was to compare the load-power curve expressed at bench press (PR) and prone bench pull (PU) between elite swimmers and kayakers. Another aim was to calculate the strength and power PR/PU ratio in the same populations. Fifteen elite swimmers (SW: age = 23.8 ± 2.9 y; body mass = 82.8 ± 5.6 kg; body height = 184.1 ± 4.6 cm) and 13 elite kayakers (KA: age = 23.8 ± 2.9 y; body mass = 91.0 ± 3.5 kg; body height = 180.1 ± 5.4 cm) were assessed for PR 1RM and PU 1RM. They were then assessed for power produced at 40, 60 and 80% of 1RM in both PR and PU. The area under the load-power curve (AUC) and PR/PU ratios were calculated for both the SW and KA groups. The KA group showed significantly higher PR1RM (+18.2%; p = 0.002) and PU1RM (+25.7%; p < 0.001) compared to the SW group. Significant group differences were also detected for PUAUC (p < 0.001) and for the PR/PU power ratio (p < 0.001). No significant group differences were detected for PRAUC (p = 0.605) and for the PR/PU strength ratio (p = 0.065; 0.87 and 0.82 in SW and KA, respectively). The present findings indicate that elite KA were stronger and more powerful than elite SW in the upper body. Not consistently with other athletic populations, both KA and SW athletes were stronger and more powerful in upper body pull compared to push moves

    A Comparison between Non-Localized Post-Activation Performance Enhancements Following Resistance Exercise for the Upper and the Lower Body

    Get PDF
    The aim of the present investigation was to compare the acute non-localized post-activation performance enhancement (PAPE) of an exercise protocol involving either the upper or the lower body muscles. Twenty-four resistance trained men participated in the present study and were randomly assigned to an upper body (UB) or to a lower body (LB) group. Both groups tested for upper and lower body power (bench press throw (BPT) and countermovement jump power (CMJP) tests). Participants in the UB group were tested pre and post a high-intensity (HI) and a high-power (POW) bench press protocol while participants in the LB group performed a HI squat and a jump session (POW). A significant group × time interaction was found for CMJP in HI (p = 0.012). Post hoc tests revealed that CMJP was elevated in UB group only (+1.6%; p = 0.025). No other significant interactions were detected. Results of this study indicate that a non-localized PAPE on the lower body may be induced by a HI bench press protocol while a HI squat protocol may not increase upper body power. In particular, the squat protocol performed in the present study (5 sets of 1 rep) may be too demanding to produce a non-localized PAPE

    Arm-stroke descriptor variability during 200-M front crawl swimming

    Get PDF
    The present study aimed to explore the variability of the arm-stroke temporal descriptors between and within laps during middle-distance swimming event using IMMUs. Eight male swimmers performed a 200-m maximum front-crawl in which the inter-lap and intra-lap variability of velocity, stroke rate, stroke-phases duration and arm-coordination index were measured through five units of IMMU. An algorithm computes the 3D coordinates of the wrist by means the IMMU orientation and the kinematic chain of upper arm biomechanical model, and it recognizes the start events of the four arm-stroke phases. Velocity and stroke rate had a mean value of 1.47 ± 0.10 m·s−1 and 32.94 ± 4.84 cycles·min−1, respectively, and a significant decrease along the 200-m (p < 0.001; η2 = 0.80 and 0.47). The end of each lap showed significantly lower stroke rate compared to the start and the middle segment (p < 0.05; η2 = 0.55). No other significant inter-lap and intra-lap differences were detected. The two main findings are: (i) IMMUs technology can be an effective solution to continuously monitor the temporal descriptors during the swimming trial; (ii) swimmers are able to keep stable their temporal technique descriptors in a middle-distance event, despite the decrease of velocity and stroke rate

    Inertial Sensors in Swimming: Detection of Stroke Phases through 3D Wrist Trajectory.

    Get PDF
    Monitoring the upper arm propulsion is a crucial task for swimmer performance. The swimmer indeed can produce displacement of the body by modulating the upper limb kinematics. The present study proposes an approach for automatically recognize all stroke phases through three-dimensional (3D) wrist\u2019s trajectory estimated using inertial devices. Inertial data of 14 national-level male swimmer were collected while they performed 25 m front-crawl trial at intensity range from 75% to 100% of their 25 m maximal velocity. The 3D coordinates of the wrist were computed using the inertial sensors orientation and considering the kinematic chain of the upper arm biomechanical model. An algorithm that automatically estimates the duration of entry, pull, push, and recovery phases result from the 3D wrist\u2019s trajectory was tested using the bi-dimensional (2D) video-based systems as temporal reference system. A very large correlation (r = 0.87), low bias (0.8%), and reasonable Root Mean Square error (2.9%) for the stroke phases duration were observed using inertial devices versus 2D video-based system methods. The 95% limits of agreement (LoA) for each stroke phase duration were always lower than 7.7% of cycle duration. The mean values of entry, pull, push and recovery phases duration in percentage of the complete cycle detected using 3D wrist\u2019s trajectory using inertial devices were 34.7 (\ub1 6.8)%, 22.4 (\ub1 5.8)%, 14.2 (\ub1 4.4)%, 28.4 (\ub1 4.5)%. The swimmer\u2019s velocity and arm coordination model do not affect the performance of the algorithm in stroke phases detection. The 3D wrist trajectory can be used for an accurate and complete identification of the stroke phases in front crawl using inertial sensors. Results indicated the inertial sensor device technology as a viable option for swimming arm-stroke phase assessment

    Acute effects of a high volume vs. High intensity bench press protocol on electromechanical delay and muscle morphology in recreationally trained women

    Get PDF
    The purpose of the present investigation was to compare the acute responses on muscle architecture, electromechanical delay (EMD) and performance following a high volume (HV: 5 sets of 10 reps at 70% of 1 repetition maximum (1RM)) and a high intensity (HI: 5 sets of 3 reps at 90% of 1RM) bench press protocol in women. Eleven recreationally trained women (age = 23.3 ± 1.8 y; body weight = 59.7 ± 6.0 kg; height = 164.0 ± 6.3 cm) performed each protocol in a counterbalanced randomized order. Muscle thickness of pectoral (PEC MT) and triceps muscles (TR MT) were collected prior to and 15 min post each trial. In addition, EMD of pectoral (PEC EMD) and triceps (TR EMD) muscles were calculated during isometric bench press maximum force tests performed at the same timepoints (IBPF). Significantly greater increases in PEC MT (p < 0.001) and TR MT (p < 0.001) were detected following HV compared to HI. PEC EMD showed a significantly greater increase following HV compared to HI (p = 0.039). Results of the present study indicate that the HV bench press protocol results in greater acute morphological and neuromuscular changes compared to a HI protocol in women. Evaluations of muscle morphology and electromechanical delay appear more sensitive to fatigue than maximum isometric force assessments

    Passive drag in young swimmers: Effects of body composition, morphology and gliding position

    Get PDF
    The passive drag (Dp) during swimming is affected by the swimmer’s morphology, body density and body position. We evaluated the relative contribution of morphology, body composition, and body position adjustments in the prediction of a swimmer’s Dp. This observational study examined a sample of 60 competitive swimmers (31 male and 29 female) with a mean (±SD) age of 15.4 ± 3.1 years. The swimmer’s Dp was measured using an electro-mechanical towing device and the body composition was assessed using a bioelectrical impedance analyser. Body lengths and circumferences were measured in both the standing position and the simulated streamlined position. Partial correlation analysis with age as a control variable showed that Dp was largely correlated (p < 0.05) with body mass, biacromial-and bi-iliac-breadth, streamline chest circumference and breadth. Body mass, Body Mass Index, chest circumference and streamline chest circumference showed a significant and moderate to strong effect (η2 > 0.55) on Dp. Body mass was the best predictor of Dp explaining 69% of the variability. These results indicate that swimmers with lower Dp values were: (i) slimmer, with lower fat and fat-free mass; (ii) thinner, with lower shoulder breadth, chest circumference, and streamline trunk diameters (iii), shorter, with lower streamline height. These findings can be used for talent identification in swimming, with particular reference to the gliding performance

    Clinical Management of Neuroendocrine Neoplasms in Clinical Practice: A Formal Consensus Exercise

    Get PDF
    Many treatment approaches are now available for neuroendocrine neoplasms (NENs). While several societies have issued guidelines for diagnosis and treatment of NENs, there are still areas of controversy for which there is limited guidance. Expert opinion can thus be of support where firm recommendations are lacking. A group of experts met to formulate 14 statements relative to diagnosis and treatment of NENs and presented herein. The nominal group and estimate-talk-estimate techniques were used. The statements covered a broad range of topics from tools for diagnosis to follow-up, evaluation of response, treatment efficacy, therapeutic sequence, and watchful waiting. Initial prognostic characterization should be based on clinical information as well as histopathological analysis and morphological and functional imaging. It is also crucial to optimize RLT for patients with a NEN starting from accurate characterization of the patient and disease. Follow-up should be patient/tumor tailored with a shared plan about timing and type of imaging procedures to use to avoid safety issues. It is also stressed that patient-reported outcomes should receive greater attention, and that a multidisciplinary approach should be mandatory. Due to the clinical heterogeneity and relative lack of definitive evidence for NENs, personalization of diagnostic–therapeutic work-up is crucial

    Chronic cerebrospinal venous insufficiency in patients with multiple sclerosis

    Get PDF
    BACKGROUND: The extracranial venous outflow routes in clinically defined multiple sclerosis (CDMS) have never been investigated. METHODS: Sixty-five patients affected by CDMS, and 235 controls composed, respectively, of healthy subjects, healthy subjects older than CDMS patients, patients affected by other neurological diseases, and older controls not affected by neurological diseases but scheduled for venography (HAV-C), blindly underwent a combined transcranial and extracranial Color-Doppler high-resolution examination (TCCS-ECD) aimed at detecting at least two of five parameters of anomalous venous outflow. According to the TCCS-ECD screening, patients and HAV-C further underwent selective venography of the azygous and jugular venous system with venous pressure measurement. RESULTS: CDMS and TCCS-ECD venous outflow anomalies were dramatically associated (OR 43, 95% CI 29-65, p<0.0001). Subsequently, venography demonstrated in CDMS, and not in controls, the presence of multiple severe extracranial stenosis, affecting the principal cerebrospinal venous segments; it configures a picture of chronic cerebrospinal venous insufficiency (CCSVI) with four different patterns of distribution of stenosis and substitute circle. Moreover, relapsing-remitting and secondary progressive courses were associated to CCSVI patterns significantly different from those of primary progressive (p<0.0001). Finally, the pressure gradient measured across the venous stenosies was slightly but significantly higher. CONCLUSION: CDMS is strongly associated with CCSVI, a picture never been described so far, characterized by abnormal venous haemodynamics determined by extracranial multiple venous strictures of unknown origin. The location of venous obstructions plays a key role in determining the clinical course of the disease

    Maintenance of Paternal Methylation and Repression of the Imprinted H19 Gene Requires MBD3

    Get PDF
    Paternal repression of the imprinted H19 gene is mediated by a differentially methylated domain (DMD) that is essential to imprinting of both H19 and the linked and oppositely imprinted Igf2 gene. The mechanisms by which paternal-specific methylation of the DMD survive the period of genome-wide demethylation in the early embryo and are subsequently used to govern imprinted expression are not known. Methyl-CpG binding (MBD) proteins are likely candidates to explain how these DMDs are recognized to silence the locus, because they preferentially bind methylated DNA and recruit repression complexes with histone deacetylase activity. MBD RNA and protein are found in preimplantation embryos, and chromatin immunoprecipitation shows that MBD3 is bound to the H19 DMD. To test a role for MBDs in imprinting, two independent RNAi-based strategies were used to deplete MBD3 in early mouse embryos, with the same results. In RNAi-treated blastocysts, paternal H19 expression was activated, supporting the hypothesis that MBD3, which is also a member of the Mi-2/NuRD complex, is required to repress the paternal H19 allele. RNAi-treated blastocysts also have reduced levels of the Mi-2/NuRD complex protein MTA-2, which suggests a role for the Mi-2/NuRD repressive complex in paternal-specific silencing at the H19 locus. Furthermore, DNA methylation was reduced at the H19 DMD when MBD3 protein was depleted. In contrast, expression and DNA methylation were not disrupted in preimplantation embryos for other imprinted genes. These results demonstrate new roles for MBD3 in maintaining imprinting control region DNA methylation and silencing the paternal H19 allele. Finally, MBD3-depleted preimplantation embryos have reduced cell numbers, suggesting a role for MBD3 in cell division

    Radioligand therapy (RLT) as neoadjuvant treatment for inoperable pancreatic neuroendocrine tumors: a literature review

    Get PDF
    In the last 10 years, several literature reports supported radioligand therapy (RLT) in neoadjuvant settings for pancreatic neuroendocrine tumors (PanNETs). Indeed, primary tumor shrinkage has been frequently reported following RLT in unresectable or borderline resectable PanNETs. Moreover, RLT-induced intratumoral modifications facilitate surgery, both on primary tumor and metastasis, having a great impact on progression free survival (PFS), overall survival (OS) and quality of life (QoL). However, prospective controlled investigations are necessary to confirm preliminary data and to define the best RLT scheme and the ideal patient that, in a multidisciplinary approach, should be referred to neoadjuvant RLT
    • …
    corecore