1,276 research outputs found

    Gauge-Invariant Temperature Anisotropies and Primordial Non-Gaussianity

    Get PDF
    We provide the gauge-invariant expression for large-scale cosmic microwave background temperature fluctuations at second-order in perturbation theory. It enables to unambiguously define the nonlinearity parameter f_NL which is used by experimental collaborations to pin down the level of Non-Gaussianity in the temperature fluctuations. Furthermore, it contains a primordial term encoding all the information about the Non-Gaussianity generated at primordial epochs and about the mechanism which gave rise to cosmological perturbations, thus neatly disentangling the primordial contribution to Non-Gaussianity from the one caused by the post-inflationary evolution.Comment: 4 pages, LaTeX file. Revised to match the version to appear in Phys. Rev. Let

    The Maximal Amount of Gravitational Waves in the Curvaton Scenario

    Get PDF
    The curvaton scenario for the generation of the cosmological curvature perturbation on large scales represents an alternative to the standard slow-roll scenario of inflation in which the observed density perturbations are due to fluctuations of the inflaton field itself. Its basic assumption is that the initial curvature perturbation due to the inflaton field is negligible. This is attained by lowering the energy scale of inflation, thereby highly suppressing the amount of gravitational waves produced during inflation. We compute the power-spectrum of the gravitational waves generated at second order in perturbation theory by the curvaton (isocurvature) perturbations between the end of inflation and the curvaton decay. An interesting property of this contribution to the tensor perturbations is that it is directly proportional to the amount of non-Gaussianity predicted within the curvaton scenario. We show that the spectrum of gravitational waves may be in the range of future gravitational wave detectors.Comment: 4 pages, laTeX; added a clarifying comment in the conclusions, version matches publication in PRD, Rapid Communication

    Testing Primordial Black Holes as Dark Matter through LISA

    Full text link
    The idea that primordial black holes (PBHs) can comprise most of the dark matter of the universe has recently reacquired a lot of momentum. Observational constraints, however, rule out this possibility for most of the PBH masses, with a notable exception around 1012M10^{-12} M_\odot. These light PBHs may be originated when a sizeable comoving curvature perturbation generated during inflation re-enters the horizon during the radiation phase. During such a stage, it is unavoidable that gravitational waves (GWs) are generated. Since their source is quadratic in the curvature perturbations, these GWs are generated fully non-Gaussian. Their frequency today is about the mHz, which is exactly the range where the LISA mission has the maximum of its sensitivity. This is certainly an impressive coincidence. We show that this scenario of PBHs as dark matter can be tested by LISA by measuring the GW two-point correlator. On the other hand, we show that the short observation time (as compared to the age of the universe) and propagation effects of the GWs across the perturbed universe from the production point to the LISA detector suppress the bispectrum to an unobservable level. This suppression is completely general and not specific to our model.Comment: 22 pages, 12 figures. v3: matching published versio

    Loop Representations for 2+1 Gravity on a Torus

    Get PDF
    We study the loop representation of the quantum theory for 2+1 dimensional general relativity on a manifold, M=T2×RM = {\cal T}^2 \times {\cal R}, where T2{\cal T}^2 is the torus, and compare it with the connection representation for this system. In particular, we look at the loop transform in the part of the phase space where the holonomies are boosts and study its kernel. This kernel is dense in the connection representation and the transform is not continuous with respect to the natural topologies, even in its domain of definition. Nonetheless, loop representations isomorphic to the connection representation corresponding to this part of the phase space can still be constructed if due care is taken. We present this construction but note that certain ambiguities remain; in particular, functions of loops cannot be uniquely associated with functions of connections.Comment: 24 journal or 52 preprint pages, revtex, SU-GP-93/3-

    A simplified structure for the second order cosmological perturbation equations

    Full text link
    Increasingly accurate observations of the cosmic microwave background and the large scale distribution of galaxies necessitate the study of nonlinear perturbations of Friedmann-Lemaitre cosmologies, whose equations are notoriously complicated. In this paper we present a new derivation of the governing equations for second order perturbations within the framework of the metric-based approach that is minimal, as regards amount of calculation and length of expressions, and flexible, as regards choice of gauge and stress-energy tensor. Because of their generality and the simplicity of their structure our equations provide a convenient starting point for determining the behaviour of nonlinear perturbations of FL cosmologies with any given stress-energy content, using either the Poisson gauge or the uniform curvature gauge.Comment: 30 pages, no figures. Changed title to the one in published version and some minor changes and addition

    Second-Order Cosmological Perturbations from Inflation

    Get PDF
    We present the first computation of the cosmological perturbations generated during inflation up to second-order in deviations from the homogeneous background solution. Our results, which fully account for the inflaton self-interactions as well as for the second-order fluctuations of the background metric, provide the exact expression for the gauge-invariant curvature perturbation bispectrum produced during inflation in terms of the slow-roll parameters or, alternatively, in terms of the scalar spectral n_S and and the tensor to adiabatic scalar amplitude ratio r. The bispectrum represents a specific non-Gaussian signature of fluctuations generated by quantum oscillations during slow-roll inflation. Our findings indicate that -- for a broad class of single-field models of inflation -- the level of non-Gaussianity in the cosmic microwave background anisotropies is large enough to be detectable by present and forthcoming satellite missions such as MAP and Planck

    The Effects of Gravitational Back-Reaction on Cosmological Perturbations

    Full text link
    Because of the non-linearity of the Einstein equations, the cosmological fluctuations which are generated during inflation on a wide range of wavelengths do not evolve independently. In particular, to second order in perturbation theory, the first order fluctuations back-react both on the background geometry and on the perturbations themselves. I this paper, the gravitational back-reaction of long wavelength (super-Hubble) scalar metric fluctuations on the perturbations themselves is investigated for a large class of inflationary models. Specifically, the equations describing the evolution of long wavelength cosmological metric and matter perturbations in an inflationary universe are solved to second order in both the amplitude of the perturbations and in the slow roll expansion parameter. Assuming that the linear fluctuations have random phases, we show that the fractional correction to the power spectrum due to the leading infrared back-reaction terms does not change the shape of the spectrum. The amplitude of the effect is suppressed by the product of the inflationary slow-roll parameter and the amplitude of the linear power spectrum. The non-gaussianity of the spectrum induced by back-reaction is commented upon.Comment: 9 page
    corecore