34 research outputs found

    Garcinoic acid prevents β-amyloid (Aβ) deposition in the mouse brain

    Get PDF
    Garcinoic acid (GA or δ-T3-13'COOH), is a natural vitamin E metabolite that has preliminarily been identified as a modulator of nuclear receptors involved in β-amyloid (Aβ) metabolism and progression of Alzheimer's disease (AD). In this study, we investigated GA's effects on Aβ oligomer formation and deposition. Specifically, we compared them with those of other vitamin E analogs and the soy isoflavone genistein, a natural agonist of peroxisome proliferator-activated receptor γ (PPARγ) that has therapeutic potential for managing AD. GA significantly reduced Aβ aggregation and accumulation in mouse cortical astrocytes. Similarly to genistein, GA up-regulated PPARγ expression and apolipoprotein E (ApoE) efflux in these cells with an efficacy that was comparable with that of its metabolic precursor δ-tocotrienol and higher than those of α-tocopherol metabolites. Unlike for genistein and the other vitamin E compounds, the GA-induced restoration of ApoE efflux was not affected by pharmacological inhibition of PPARγ activity, and specific activation of pregnane X receptor (PXR) was observed together with ApoE and multidrug resistance protein 1 (MDR1) membrane transporter up-regulation in both the mouse astrocytes and brain tissue. These effects of GA were associated with reduced Aβ deposition in the brain of TgCRND8 mice, a transgenic AD model. In conclusion, GA holds potential for preventing Aβ oligomerization and deposition in the brain. The mechanistic aspects of GA's properties appear to be distinct from those of other vitamin E metabolites and of genistein

    Randomised controlled trial combining vitamin E-functionalised chocolate with physical exercise to reduce the risk of protein-energy malnutrition in predementia aged people: study protocol for Choko-Age

    Get PDF
    Objective: Protein-energy malnutrition and the subsequent muscle wasting (sarcopenia) are common ageing complications. It is knowing to be also associated with dementia. Our programme will test the cytoprotective functions of vitamin E combined with the cortisol-lowering effect of chocolate polyphenols (PP), in combination with muscle anabolic effect of adequate dietary protein intake and physical exercise to prevent the age-dependent decline of muscle mass and its key underpinning mechanisms including mitochondrial function, and nutrient metabolism in muscle in the elderly. Methods and analysis: In 2020, a 6-month double-blind randomised controlled trial in 75 predementia older people was launched to prevent muscle mass loss, in respond to the 'Joint Programming Initiative A healthy diet for a healthy life'. In the run-in phase, participants will be stabilised on a protein-rich diet (0.9-1.0 g protein/kg ideal body weight/day) and physical exercise programme (high-intensity interval training specifically developed for these subjects). Subsequently, they will be randomised into three groups (1:1:1). The study arms will have a similar isocaloric diet and follow a similar physical exercise programme. Control group (n=25) will maintain the baseline diet; intervention groups will consume either 30 g/day of dark chocolate containing 500 mg total PP (corresponding to 60 mg epicatechin) and 100 mg vitamin E (as RRR-alpha-tocopherol) (n=25); or the high polyphenol chocolate without additional vitamin E (n=25). Muscle mass will be the primary endpoint. Other outcomes are neurocognitive status and previously identified biomolecular indices of frailty in predementia patients. Muscle biopsies will be collected to assess myocyte contraction and mitochondrial metabolism. Blood and plasma samples will be analysed for laboratory endpoints including nutrition metabolism and omics. Ethics and dissemination: All the ethical and regulatory approvals have been obtained by the ethical committees of the Azienda Ospedaliera Universitaria Integrata of Verona with respect to scientific content and compliance with applicable research and human subjects' regulation. Given the broader interest of the society toward undernutrition in the elderly, we identify four main target audiences for our research activity: national and local health systems, both internal and external to the project; targeted population (the elderly); general public; and academia. These activities include scientific workshops, public health awareness campaigns, project dedicated website and publication is scientific peer-review journals. Trial registration number: NCT05343611

    Nickel oxide nanoparticles exposure as a risk factor for male infertility: “In vitro” effects on porcine pre-pubertal Sertoli cells

    Get PDF
    Lately, nickel oxide nanoparticles (NiO NPs) have been employed in different industrial and biomedical fields. Several studies have reported that NiO NPs may affect the development of reproductive organs inducing oxidative stress and, resulting in male infertility. We investigated the in vitro effects of NiO NPs on porcine pre-pubertal Sertoli cells (SCs) which undergone acute (24 h) and chronic (from 1 up to 3 weeks) exposure at two subtoxic doses of NiO NPs of 1 μg/ml and 5 μg/ml. After NiO NPs exposure we performed the following analysis: (a) SCs morphological analysis (Light Microscopy); (b) ROS production and oxidative DNA damage, gene expression of antioxidant enzymes (c) SCs functionality (AMH, inhibin B Real-time PCR analysis and ELISA test); (d) apoptosis (WB analysis); (e) pro-inflammatory cytokines (Real-time PCR analysis), and (f) MAPK kinase signaling pathway (WB analysis). We found that the SCs exposed to both subtoxic doses of NiO NPs didn’t sustain substantial morphological changes. NiO NPs exposure, at each concentration, reported a marked increase of intracellular ROS at the third week of treatment and DNA damage at all exposure times. We demonstrated, un up-regulation of SOD and HO-1 gene expression, at both concentrations tested. The both subtoxic doses of NiO NPs detected a down-regulation of AMH and inhibin B gene expression and secreted proteins. Only the 5 μg/ml dose induced the activation of caspase-3 at the third week. At the two subtoxic doses of NiO NPs a clear pro-inflammatory response was resulted in an up-regulation of TNF-α and IL-6 in terms of mRNA. Finally, an increased phosphorylation ratio of p-ERK1/2, p-38 and p-AKT was observed up to the third week, at both concentrations. Our results show the negative impact of subtoxic doses NiO NPs chronic exposure on porcine SCs functionality and viability

    New Challenges for Anatomists in the Era of Omics

    No full text
    Anatomic studies have traditionally relied on macroscopic, microscopic, and histological techniques to investigate the structure of tissues and organs. Anatomic studies are essential in many fields, including medicine, biology, and veterinary science. Advances in technology, such as imaging techniques and molecular biology, continue to provide new insights into the anatomy of living organisms. Therefore, anatomy remains an active and important area in the scientific field. The consolidation in recent years of some omics technologies such as genomics, transcriptomics, proteomics, and metabolomics allows for a more complete and detailed understanding of the structure and function of cells, tissues, and organs. These have been joined more recently by “omics” such as radiomics, pathomics, and connectomics, supported by computer-assisted technologies such as neural networks, 3D bioprinting, and artificial intelligence. All these new tools, although some are still in the early stages of development, have the potential to strongly contribute to the macroscopic and microscopic characterization in medicine. For anatomists, it is time to hitch a ride and get on board omics technologies to sail to new frontiers and to explore novel scenarios in anatomy

    Antioxidant Power on Dermal Cells by Textiles Dyed with an Onion (Allium cepa L.) Skin Extract

    No full text
    In this study, the phenol loading and antioxidant activity of wool yarn prepared with the aqueous extract of onion (Allium cepa L.) skin was enhanced by implementing the dyeing process with the use of alum as a mordant. Spectrophotometric and chromatographic methods were applied for the characterization of polyphenolic substances loaded on the wool yarn. The antioxidant/anti-inflammatory properties were evaluated by determining the level of intra- and extra-cellular reactive oxygen species (ROS) production in keratinocytes and dermal fibroblasts pre-treated with lipopolysaccharide put in contact with artificial sweat. An elevated dye uptake on wool was observed for the pre-mordanted sample, as demonstrated by high absorbance values in the UV-Visible spectral range. Chromatographic results showed that protocatechuic acid and its glucoside were the main phenolic acid released in artificial sweat by the wool yarns, while quercetin-4′-glucoside and its aglycone quercetin were more retained. The extract released from the textile immersed in artificial sweat showed a significant reducing effect on the intra-and extracellular ROS levels in the two cell lines considered. Cytofluorimetric analyses demonstrated that the selected mordant was safe at the concentration used in the dyeing procedure. Therefore, alum pre-mordanted textiles dyed with onion-skin extracts may represent an interesting tool against skin diseases

    Glutathione compartmentalization and its role in glutathionylation and other regulatory processes of cellular pathways

    Get PDF
    Glutathione is considered the major non-protein low molecular weight modulator of redox processes and the most important thiol reducing agent of the cell. The biosynthesis of glutathione occurs in the cytosol from its constituent amino acids, but this tripeptide is also present in the most important cellular districts, such as mitochondria, nucleus, and endoplasmic reticulum, thus playing a central role in several metabolic pathways and cytoprotection mechanisms. Indeed, glutathione is involved in the modulation of various cellular processes and, not by chance, it is a ubiquitous determinant for redox signaling, xenobiotic detoxification, and regulation of cell cycle and death programs. The balance between its concentration and redox state is due to a complex series of interactions between biosynthesis, utilization, degradation, and transport. All these factors are of great importance to understand the significance of cellular redox balance and its relationship with physiological responses and pathological conditions. The purpose of this review is to give an overview on glutathione cellular compartmentalization. Information on its subcellular distribution provides a deeper understanding of glutathione-dependent processes and reflects the importance of compartmentalization in the regulation of specific cellular pathways

    Vitamin E (Alpha-Tocopherol) Metabolism and Nutrition in Chronic Kidney Disease

    No full text
    Vitamin E (alpha-tocopherol) is an essential micronutrient and fat-soluble antioxidant with proposed role in protecting tissues from uncontrolled lipid peroxidation. This vitamin has also important protein function and gene modulation effects. The metabolism of vitamin E depends on hepatic binding proteins that selectively retain food alpha-tocopherol for incorporation into nascent VLDL and tissue distribution together with esterified cholesterol and triglycerides. Chronic kidney disease (CKD) is a condition of oxidative stress and increased lipid peroxidation, that are associated with alterations of alpha-tocopherol metabolism and function. Specific changes have been reported for the levels of its enzymatic metabolites, including both short-chain and long-chain metabolites, the latter being endowed with regulatory functions on enzymatic and gene expression processes important for the metabolism of lipids and xenobiotics detoxification, as well as for the control of immune and inflammatory processes. Vitamin E therapy has been investigated in CKD using both oral vitamin E protocols and vitamin E-coated hemodialyzers, showing promising results in the secondary prevention of cardiovascular disease, as well as of immune and hematological complications. These therapeutic approaches are reviewed in the present article, together with a narrative excursus on the main findings indicating CKD as a condition of relative deficiency and impaired metabolism of vitamin E

    How Aging and Oxidative Stress Influence the Cytopathic and Inflammatory Effects of SARS-CoV-2 Infection: The Role of Cellular Glutathione and Cysteine Metabolism

    No full text
    SARS-CoV-2 infection can cause a severe respiratory distress syndrome with inflammatory and thrombotic complications, the severity of which increases with patients' age and presence of comorbidity. The reasons for an age-dependent increase in the risk of severe COVID-19 could be many. These include defects in the homeostatic processes that control the cellular redox and its pivotal role in sustaining the immuno-inflammatory response to the host and the protection against oxidative stress and tissue degeneration. Pathogens may take advantage of such age-dependent abnormalities. Alterations of the thiol redox balance in the lung tissue and lining fluids may influence the risk of infection, and the host capability to respond to pathogens and to avoid severe complications. SARS-CoV-2, likewise other viruses, such as HIV, influenza, and HSV, benefits in its replication cycle of pro-oxidant conditions that the same viral infection seems to induce in the host cell with mechanisms that remain poorly understood. We recently demonstrated that the pro-oxidant effects of SARS-CoV-2 infection are associated with changes in the cellular metabolism and transmembrane fluxes of Cys and GSH. These appear to be the consequence of an increased use of Cys in viral protein synthesis and to ER stress pathway activation that interfere with transcription factors, as Nrf2 and NFkB, important to coordinate the metabolism of GSH with other aspects of the stress response and with the pro-inflammatory effects of this virus in the host cell. This narrative review article describes these cellular and molecular aspects of SARS-CoV-2 infection, and the role that antivirals and cytoprotective agents such as N-acetyl cysteine may have to limit the cytopathic effects of this virus and to recover tissue homeostasis after infection

    Effect of a UV-C Automatic Last-Generation Mobile Robotic System on Multi-Drug Resistant Pathogens

    No full text
    Background: Healthcare-associated infections caused by multi-drug resistant (MDR) pathogens are associated with increased mortality and morbidity among hospitalized patients. Inanimate surfaces, and in particular high-touch surfaces, have often been described as the source for outbreaks of nosocomial infections. The present work aimed to evaluate the efficacy of a last-generation mobile (robotic) irradiation UV-C light device R2S on MDR microorganisms in inanimate surfaces and its translation to hospital disinfection. Methods: The efficacy of R2S system was evaluated in environmental high-touch surfaces of two separate outpatient rooms of Perugia Hospital in Italy. The static UV-C irradiation effect was investigated on both the bacterial growth of S. aureus, MRSA, P. aeruginosa, and K. pneumoniae KPC and photoreactivation. The antimicrobial activity was also tested on different surfaces, including glass, steel, and plastic. Results: In the environmental tests, the R2S system decreased the number of bacteria, molds, and yeasts of each high-touch spot surface (HTSs) compared with manual sanitization. UV-C light irradiation significantly inhibits in vitro bacterial growth, also preventing photoreactivation. UV-C light bactericidal activity on MDR microorganisms is affected by the type of materials of inanimate surfaces. Conclusions: The last-generation mobile R2S system is a more reliable sanitizing procedure compared with its manual counterpart
    corecore