7 research outputs found

    Einstein equations in the null quasi-spherical gauge

    Get PDF
    The structure of the full Einstein equations in a coordinate gauge based on expanding null hypersurfaces foliated by metric 2-spheres is explored. The simple form of the resulting equations has many applications -- in the present paper we describe the structure of timelike boundary conditions; the matching problem across null hypersurfaces; and the propagation of gravitational shocks.Comment: 12 pages, LaTeX (revtex, amssymb), revision 18 pages, contains expanded discussion and explanations, updated references, to appear in CQ

    Linearized solutions of the Einstein equations within a Bondi-Sachs framework, and implications for boundary conditions in numerical simulations

    Full text link
    We linearize the Einstein equations when the metric is Bondi-Sachs, when the background is Schwarzschild or Minkowski, and when there is a matter source in the form of a thin shell whose density varies with time and angular position. By performing an eigenfunction decomposition, we reduce the problem to a system of linear ordinary differential equations which we are able to solve. The solutions are relevant to the characteristic formulation of numerical relativity: (a) as exact solutions against which computations of gravitational radiation can be compared; and (b) in formulating boundary conditions on the r=2Mr=2M Schwarzschild horizon.Comment: Revised following referee comment

    Numerical relativity with characteristic evolution, using six angular patches

    Get PDF
    The characteristic approach to numerical relativity is a useful tool in evolving gravitational systems. In the past this has been implemented using two patches of stereographic angular coordinates. In other applications, a six-patch angular coordinate system has proved effective. Here we investigate the use of a six-patch system in characteristic numerical relativity, by comparing an existing two-patch implementation (using second-order finite differencing throughout) with a new six-patch implementation (using either second- or fourth-order finite differencing for the angular derivatives). We compare these different codes by monitoring the Einstein constraint equations, numerically evaluated independently from the evolution. We find that, compared to the (second-order) two-patch code at equivalent resolutions, the errors of the second-order six-patch code are smaller by a factor of about 2, and the errors of the fourth-order six-patch code are smaller by a factor of nearly 50.Comment: 12 pages, 5 figures, submitted to CQG (special NFNR issue

    Hyperboloidal foliations and scri-fixing

    Full text link
    We discuss a gauge choice which allows us to avoid the introduction of artificial timelike outer boundaries in numerical studies of test fields based on a 3+1 decomposition of asymptotically flat background spacetimes. The main idea is to include null infinity in the computational domain by conformally compactifying the metric on hyperboloidal foliations and fixing the spatial coordinate location of null infinity, i.e. scri-fixing. We construct such coordinates explicitly on Minkowski, Schwarzschild and Kerr spacetimes.Comment: 14 pages, 14 figures. Published versio

    Hyperboloidal evolution with the Einstein equations

    Get PDF
    We consider an approach to the hyperboloidal evolution problem based on the Einstein equations written for a rescaled metric. It is shown that a conformal scale factor can be freely prescribed a priori in terms of coordinates in a well-posed hyperboloidal initial value problem such that the location of null infinity is independent of the time coordinate. With an appropriate choice of a single gauge source function each of the formally singular conformal source terms in the equations attains a regular limit at null infinity. The suggested approach could be beneficial in numerical relativity for both wave extraction and outer boundary treatment.Comment: 10 pages; uses iop styl

    Numerical Approaches to Spacetime Singularities

    Get PDF
    This Living Review updates a previous version which its itself an update of a review article. Numerical exploration of the properties of singularities could, in principle, yield detailed understanding of their nature in physically realistic cases. Examples of numerical investigations into the formation of naked singularities, critical behavior in collapse, passage through the Cauchy horizon, chaos of the Mixmaster singularity, and singularities in spatially inhomogeneous cosmologies are discussed.Comment: 51 pages, 6 figures may be found in online version: Living Rev. Relativity 2002-1 at www.livingreviews.or

    Intracellular Roles of Microbial Aminotransferases: Overlap Enzymes Across Different Biochemical Pathways

    No full text
    corecore