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Abstract

We consider an approach to the hyperboloidal evolution problem based on the
Einstein equations written for a rescaled metric. It is shown that a conformal
scale factor can be freely prescribed a priori in terms of coordinates in a well-
posed hyperboloidal initial value problem such that the location of null infinity
is independent of the time coordinate. With an appropriate choice of a single
gauge source function each of the formally singular conformal source terms in
the equations attains a regular limit at null infinity. The suggested approach
could be beneficial in numerical relativity for both wave extraction and outer
boundary treatment.

PACS numbers: 04.20.Ha, 04.25.D−, 04.20.Ex, 04.30.−w

1. Introduction

An important problem in general relativity is the calculation of gravitational radiation emitted
by self-gravitating astrophysical sources. In the isolated system idealization of such objects,
one attaches to the far-field zone an asymptotic region in which the spacetime becomes flat in a
certain sense. The resulting models are commonly referred to as asymptotically flat spacetimes.
Because gravitational energy is not localizable and there is no generally satisfactory definition
of quasi-local energy available [1], the concept of gravitational radiation is rigorously defined
in these models only at null infinity [2, 3]. As a consequence, one needs global access to the
spacetime solution to discuss gravitational radiation in an unambiguous way. In numerical
calculations, however, one typically truncates the solution domain by introducing an artificial
timelike outer boundary into the spacetime. This practice introduces certain well-known
conceptual and practical difficulties [4–9].

A clean way to calculate gravitational radiation is to include null infinity in the
computational domain. This can be achieved under certain conditions by employing the
conformal compactification technique introduced by Penrose which allows the study of null
infinity by local differential geometry [10–12]. This framework has been used extensively
in the mathematical discussion of isolated systems [13–17]. In numerical applications, it
has been successfully applied within the characteristic approach to spacetimes which can be
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foliated by null hypersurfaces in a regular way [18–22]. In regions of highly dynamical, strong
gravitational fields, however, characteristic foliations are not well behaved due to the formation
of caustics in bundles of light rays generating the null hypersurfaces [23]. While there are
promising suggestions on how to deal with this difficulty such as the Cauchy-characteristic
matching [24–27], a successful implementation has not yet been achieved.

A more general method of including null infinity in the solution domain has been suggested
by Friedrich [28]. In this approach, one solves Cauchy problems based on spacelike foliations
that intersect null infinity. Such foliations are called hyperboloidal as their asymptotic behavior
is similar to that of the standard hyperboloids in Minkowski spacetime. While one solves a
Cauchy problem in the sense of partial differential equations, the underlying surfaces are not
Cauchy surfaces in the sense of differential geometry because their domain of dependence does
not cover the entire spacetime. To avoid misunderstanding, the related problem is called the
hyperboloidal problem. The hyperboloidal approach is promising as the underlying surfaces
combine favorable properties of standard and characteristic approaches. They are as flexible as
Cauchy-type foliations commonly used in numerical relativity and they approach null infinity
thus enabling a clean treatment of gravitational radiation.

In [28], the Einstein equations are reformulated for a conformally rescaled metric such that
the equations are manifestly regular at null infinity. The resulting system of regular conformal
field equations is larger than the Einstein equations and involves evolution equations for
the conformal factor. This approach has been very efficient in the effort to understand the
global structure of spacetimes [17, 29–31]. Numerical work on the hyperboloidal problem for
this system has been performed mainly by Hübner [32–36], Frauendiener [37–41] and Husa
[42, 43] (see [44] for a review). Unfortunately, the regular conformal field equations could
not yet be used numerically in the study of highly dynamical systems.

In view of the recent success of numerical codes in solving the Einstein equations for a
large variety of astrophysically interesting systems [45–50], it seems desirable to implement
the hyperboloidal problem directly for the conformal Einstein equations [51–54]. The idea is
the following: under a conformal rescaling of the metric g = �2g̃ with a function � > 0, the
Ricci tensor transforms as

Rμν[g] = Rμν[g̃] − 1

�
(2∇μ∇ν� + ��gμν) +

3

�2
(∇λ�)∇λ�gμν. (1)

Here, ∇μ is the Levi-Civita connection of the rescaled metric g and � := gμν∇μ∇ν . The
Einstein vacuum field equations, Gμν[g̃] := Rμν[g̃] − 1

2 g̃μνR[g̃] = 0, are thus equivalent to a
similar system for the conformally rescaled metric

Gμν[g] = Tμν[�] := − 2

�
(∇μ∇ν� − ��gμν) − 3

�2
(∇λ�)∇λ�gμν. (2)

To include null infinity in the computational domain, one allows the conformal factor � to
vanish in a suitable way and solves the above system directly. It has been pointed out [55]
that there are two major difficulties in this program, even if one assumes that the conformal
extension is regular. First there is the question of how to fix �. The conformal factor is related
to the asymptotic structure of the spacetime, therefore it must be determined jointly with the
metric. Secondly, there are terms involving divisions by powers of � which are formally
singular at {� = 0}. The question then is how to make sure that these terms attain regular
limits at null infinity.

Assuming a regular conformal extension, these difficulties have been solved in the
characteristic case by Tamburino and Winicour [56]. Their solution includes a certain choice
of coordinate and conformal gauge in which the formally singular terms in (2) attain regular
limits at null infinity. Their construction provides, in a sense, the mathematical basis for
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characteristic codes that include null infinity in the computational domain. The problem in
the hyperboloidal case has been open.

We address the above-mentioned difficulties in two propositions. The first one treats
the case of a strictly positive conformal factor and states that it can be prescribed almost
arbitrarily in terms of local spacetime coordinates in a well-posed Cauchy problem for the
Einstein equations. For the second proposition we allow the conformal factor to vanish in a
certain way so that null infinity can be included in the computational domain. We see that a
class of gauges can be chosen in a hyperboloidal initial value problem in such a way that the
formally singular terms due to conformal compactification attain regular limits at null infinity
for a certain class of asymptotically flat spacetimes.

2. A hyperbolic reduction for a positive conformal factor

The system (2) has the form of Einstein equations with source terms. In general, such
a system must be completed by additional equations derived from the Bianchi identities,
∇μGμν = ∇μTμν = 0, implying equations of motion for the source functions. In our case,
however, there are no additional equations required for the conformal factor � as shown below.

Proposition 1. The conformal Einstein equations (2) admit a well-posed initial value problem
for an arbitrary � ∈ C3(R4, R+).

First we show that the Bianchi identities are satisfied for a positive, sufficiently
differentiable conformal factor. We calculate

∇μTμν[�] = − 2

�2
∇μ�(2∇μ∇ν� + ��gμν)

− 2

�
(� ∇ν� − ∇ν ��) +

6

�3
(∇ν�)(∇λ�)∇λ�. (3)

Contracting the commutation relation ∇λ∇ν∇ρ� − ∇ν∇λ∇ρ� = R σ
λνρ ∇σ� with gλρ and

exchanging derivatives we get �∇ν� − ∇ν �� = Rσ
ν ∇σ�. Using this relation, equation (2)

with the definition of the Einstein tensor Gμν[g] and the conformal source tensor Tμν[�], we
get

∇μTμν[�] = − 2

�
∇μ�(Gμν[g] − Tμν[�]) = 0. (4)

We see that the Bianchi identities are satisfied by virtue of the conformal Einstein equations
for a non-vanishing � that is at least three times differentiable, i.e. � ∈ C3(R4, R+), but is
otherwise arbitrary. Therefore, � can be regarded as a free function. We can write down some
suitable equation for it consistent with the above calculation, or prescribe it directly in terms
of some yet unspecified coordinate system as long as � �= 0.

The next step is to set up a well-posed initial value problem for (2). We employ the general
wave gauge reduction of the Einstein equations, also known as the generalized harmonic
reduction for historical reasons, where the argument of well-posedness for (2) can be taken
almost directly from [57, 58] with only a minor modification.

Regarding the Ricci tensor Rμν as a differential operator acting on the metric g, we can
write the conformal Einstein equations in a local coordinate system {xμ}μ=0,1,2,3 as

Rμν[g] = 1
2gλρ∂λ∂ρg

μν + ∇(μ�ν) − gλρgστ�
μ
λσ�ν

ρτ = T μν − 1
2gμνT , (5)

where we have defined the contracted Christoffel symbols �μ := gστ�μ
στ = −� xμ, set

∇μ�ν = gμρ
(
∂ρ�

ν + �ν
ρλ�

λ
)

and T = gλρTλρ . The principal part of the operator Rμν is of no
known type. It was recognized by Choquet-Bruhat [59] that one can always choose a wave
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gauge, historically referred to as a harmonic gauge, at least locally, so that the contracted
Christoffel symbols vanish, �μ = −�g xμ = 0, and the system (5), reduces to a quasi-linear
system of wave equations. This reduction technique led to the first local existence result in
general relativity [59].

The reduction based on the wave gauge was generalized to arbitrary coordinate systems
by Friedrich with the introduction of gauge source functions [60]. In the general wave gauge,
the coordinates are constructed as solutions to an initial value problem for the semi-linear
system of wave equations �g xμ = −�μ = −Fμ with prescribed functions Fμ(x, g) that
can depend on the coordinates and the metric. These functions act as source functions for the
coordinate gauge, hence the name gauge source functions. Note that the general wave gauge,
in contrast to the wave gauge described above, is not a specific choice of coordinates but a
particular way to prescribe general coordinates in an initial value problem.

The reduced system for (5) is then obtained by replacing the contracted Christoffel symbols
with the gauge source functions Fμ. The result is a quasi-linear system of wave equations for
the metric components which can be written as

Gμν[g] = T μν[�] + ∇(μCν) − 1
2 (∇λC

λ)gμν, (6)

where Cμ = �μ − Fμ are called the constraint fields. We want to study the Cauchy problem
for this system. We will only point out certain aspects that play a role in later considerations
or that are different from the detailed discussion in [58].

The Cauchy data on an initial hypersurface S ≡ {x0 = 0} consist of gμν |S and ∂0g
μν |S .

Assume we are given on S a Riemannian metric hab and a symmetric tensor field Kab as a
solution to the Einstein constraint equations where a, b = 1, 2, 3. We choose gauge source
functions Fμ(xλ) and four functions on S that correspond to initial data for the lapse function
α > 0 and the three components of the shift vector βa . In the interior, these functions should
be chosen such that ∂0 is timelike which implies α2 − habβ

aβb > 0. We will later allow ∂0

to become null at the outer boundary (see the discussion leading to (12)). We obtain the data
gμν |S via the decomposition

g = gμν∂μ∂ν = − 1

α2
∂2

0 +
2

α2
βa∂0∂a +

(
hab − βaβb

α2

)
∂a∂b. (7)

The data ∂0g
μν |S are determined such that Cμ|S = 0 and Kαβ is the second fundamental form

on S. Standard theorems guarantee that we can find a unique solution to the Cauchy problem
for the reduced equations (6) that depends continuously on the initial data. The solution spaces
of (6) and (2) are equivalent if the constraint fields vanish. The Bianchi identity, ∇μGμν = 0,
and (4) together with (6) imply the following subsidiary system for the constraint fields:

�Cμ + Rμ
ν Cν − 4

�
∇ν�

(
∇(μCν) − 1

2
(∇λC

λ)gμν

)
= 0. (8)

Initial data for the evolution equations have been constructed such that Cμ|S = 0. From the
evolution equations evaluated on S it follows that ∂0C

μ|S = 0. The uniqueness of solutions to
the Cauchy problem for the semi-linear, homogeneous system of wave equations for Cμ given
in (8) then implies that the solution to the reduced system (6) satisfies Cμ = 0 away from the
initial surface S. Thus we have shown that there is a well-posed hyperbolic reduction for the
conformal Einstein equations (2).

We shall briefly elaborate on how the free prescription of the conformal factor is to be
understood. We cannot prescribe the conformal factor as a function on the manifold because,
in an initial value problem, we do not know the manifold. The prescription of a function for
the conformal factor determines only its representation in terms of coordinates which are yet
to be constructed during the solution process. Invariant properties of the resulting conformal
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factor will depend on initial data and the choice of gauge source functions. The essential
property of (2) that is responsible for this feature is its conformal invariance, in the sense that
if (M̃, g,�) is a solution to Gμν[g] = Tμν[�], then (M̃, ω2g, ω�) with a positive function ω

is a solution to Gμν[ω2g] = Tμν[ω�]. The system (2) determines the conformal class of the
metric g in contrast to the Einstein equations which determine the isometry class of g̃. This
allows us to prescribe an arbitrary coordinate representation for the conformal factor as long
as there are no geometric requirements to be satisfied.

3. Choice of gauge at null infinity

In this section, we deal with the formally singular terms in the conformal source tensor
Tμν[�]. We first present a preferred conformal gauge at null infinity in which each of the
conformal source terms attains a regular limit at null infinity in a given conformal extension.
Then we present how this choice of gauge can be achieved by a suitable choice of gauge
source functions in a hyperboloidal initial value problem where the conformal factor has been
prescribed explicitly in terms of coordinates. We restrict our attention to future null infinity,
denoted by I +. The treatment of past null infinity follows by time reversal.

3.1. The preferred conformal gauge at I +

Assume that a solution (M̃, g̃) to the Einstein vacuum field equations has been given which
admits a conformal extension (M, g,�) including a smooth piece of I +. The existence of
a broad class of such solutions is due to [28, 61]. It has also been shown that solutions exist
which not only admit a smooth piece of I + but a complete I + [62] (see also [29, 63, 64]).
We show that I + ⊂ {� = 0, d� �= 0} is a shear-free null surface independent of the
conformal gauge [12, 65]. Multiplying (2) with �2 and evaluating it along I + we see that
gλρ∇λ�∇ρ�|I + = 0. This shows together with d�|I + �= 0 that I + is a null surface. Now
multiply (2) with � and take its trace-free part along I + to get(

∇μ∇ν� − 1

4
gμν � �

) ∣∣∣
I +

= 0. (9)

The relation above is independent of the conformal gauge because we derived it from the
conformal transformation behavior of the Einstein tensor (2). Another way to see the conformal
invariance of (9) is to consider the transformation behavior of (9) under a further rescaling of
the conformal metric given by

g′ = ω2g, �′ = ω�, ω > 0 on M. (10)

We have ∇′
μ∇′

ν�
′|I + = ω∇μ∇ν� + gμν∇λ�∇λω. The trace of this relation reads

�′�′|I + = 1

ω2
(ω �� + 4∇λ�∇λω), (11)

whence we get(∇′
μ∇′

ν�
′ − 1

4g′
μν�′�′)∣∣

I + = ω
(∇μ∇ν� − 1

4gμν � �
)∣∣

I + = 0.

To see that (9) implies shear-freeness of I +, we introduce in a neighborhood of I + a null
vector field lμ that satisfies lμ|I + = ∇μ�. We complete lμ to a Newman–Penrose complex
null tetrad (l, k,m, m̄) satisfying the usual relations [66]. Newman and Penrose introduced
12 complex functions called spin coefficients. We are interested in two of them, namely
σ := mμmν∇μlν and ρ := mμm̄ν∇μlν . As discussed in [66], when lμ is tangent to an affinely
parametrized null geodesic, σ can be interpreted as the complex shear of the null geodesic
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congruence given by lμ and the expansion of the congruence is characterized by ρ. We see
with (9)

σ |I + = 1
4mμmνgμν � � = 0, ρ|I + = 1

4mμm̄νgμν �� = 1
4 ��.

In our case, the null generators of I + are not necessarily geodesic, that is, in general they do
not satisfy lλ∇λl

μ = 0 on I +. However, under a rescaling of lμ given by (l′)μ = θlμ with
a positive function θ , the spin coefficient σ transforms as σ ′ = θσ , so the vanishing of σ is
invariant under such a rescaling which we can use to make lμ geodesic. We conclude that I +

is a shear-free surface in any conformal gauge.
While the vanishing of σ and thus the shear-freeness of I + is conformally invariant, the

vanishing of the expansion of I +, characterized by � �|I + , depends on the conformal gauge.
As can be seen from (11), given a conformal extension we can always find a rescaling (10) such
that �′ �′|I + = 0 by solving the ordinary differential equation ∇λ�∇λ ln ω|I + = − 1

4 � �|I + .
We call the conformal gauge in which the expansion of I + vanishes a preferred conformal

gauge. This gauge has been useful in mathematical studies because of its special properties
[65, 67]. It is also the gauge choice of Tamburino and Winicour [56]. By (9) and (2) we see
that in a preferred conformal gauge

∇μ∇ν�|I + = 0, and lim
�→0

1

�
gλβ∇λ�∇β� = 0,

which implies that each conformal source term in (2) attains a regular limit at I +.

3.2. The choice of gauge source functions at I +

The above construction of a preferred conformal gauge assumes that a conformal extension
have been given. We are interested, however, in the case where only initial data have been
given and we would like to know how to choose the gauge source functions suitably so that
the hyperboloidal evolution is performed in a preferred conformal gauge.

Proposition 2. Assume hyperboloidal initial data have been given whose evolution admits a
smooth conformal compactification at I +. A preferred conformal gauge can be achieved in a
general wave gauge reduction of (2) by using � as a coordinate near {� = 0} and choosing
the related gauge source function F� such that F�|{�=0} = 0.

We can use the conformal factor as a coordinate near {� = 0} because d�|{�=0} �= 0.
In the general wave gauge, there is a gauge source function related to each coordinate via
�g xμ = −Fμ. Using the conformal factor as a coordinate, we see that the value of the gauge
source function F� = −� � at I + is a direct measure of the expansion of I +. Setting it to
zero makes the expansion vanish and hence gives a preferred conformal gauge.

While its proof is very simple, proposition 2 is a remarkable property of the conformal
Einstein equations. In general, it is not known how a desirable gauge can be achieved by a
suitable choice of gauge source functions [68] because geometric properties of coordinates
depend not only on this choice but also on initial data in an essentially nonlinear way. The
above proposition is very special in this respect as it states that one can, by a suitable choice
of a single gauge source function, fix an a priori known coordinate surface to be a null surface
free of shear and expansion that corresponds to null infinity.

In a practical numerical calculation one may proceed as follows. One calculates on a
three-dimensional surface S with a two-dimensional boundary � hyperboloidal initial data
(S, hab,Kab) whose evolution admits a smooth conformal compactification at I +. The
existence of such data has been studied in [61]. In the case of isotropic extrinsic curvature,
that is, under the assumption Kab = K

3 hab, the data need to be such that the trace-free part
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of the second fundamental form induced by hab on � vanishes. This condition corresponds
to shear-freeness of I +. The case with more general data has been considered in [69, 70].
One can construct the data in such a way that the conformal factor has the form � = 1 − r

in a neighborhood of � where r is a coordinate whose level surfaces have spherical topology
[52]. The form of the conformal factor in the interior can be chosen freely to satisfy practical
needs, for example to obtain high resolution in certain domains. Initial data for lapse and shift
should be chosen such that �μ|I + = −gμr |r=1 = ∂

μ

0 = δ
μ

0 , which implies with (7)

α|� =
√

hrr , βa|� = −har . (12)

The gauge source functions can be given quite freely as long as the condition F r |r=1 = 0 is
satisfied. Then each of the conformal source terms in

Tμν = − 2

1 − r

(
�r

μν − gμνF
r
) − 3

(1 − r)2
gμνg

rr ,

will attain a regular limit at I + and the system (2) can, in principle, be solved. In practice,
however, the accurate calculation of these limits poses a major computational difficulty that
needs further study.

4. Discussion

We studied the hyperboloidal evolution problem for the conformal Einstein equations. Two
propositions have been made that suggest an alternative method for numerical calculations of
asymptotically simple spacetimes including null infinity, substantiating earlier expectations in
this direction [51–54].

Proposition 1 states that one can formulate a well-posed initial value problem for the
Einstein equations in which a positive conformal factor is prescribed freely in terms of
coordinates. In a sense, this result can be regarded as trivial because a rescaling with a
positive factor essentially amounts to a relabeling of the metric. On the other hand, the
possibility of prescribing the conformal factor in a well-posed initial value problem is very
convenient because it allows us to set up a formulation of the Einstein equations for a rescaled
metric in which the conformal factor is independent of the time coordinate in the whole
solution domain. Depending on practical demands, one can choose the conformal factor in
certain regions to be unity so that the standard Einstein equations are obtained, or larger than
unity for refinement.

Proposition 2 shows how one can construct the solution to a hyperboloidal initial value
problem directly in a preferred conformal gauge by a suitable choice of a single gauge source
function. In this gauge the conformal source terms attain regular limits at null infinity. In
combination with proposition 1, this allows us to include null infinity in the solution domain
in such a way that the outer boundary coincides with null infinity. It is a remarkable feature
of the conformal Einstein equations in the general wave gauge that the constraint equations,
the evolution system, the gauge system and the subsidiary system all work in harmony with
conformal transformation formulae allowing us to make the geometric properties of null
infinity manifest on an a priori known coordinate surface.

We have assumed vacuum throughout the calculations. Matter can be included by solving
the matter equations with respect to the conformally rescaled metric if the matter fields remain
confined to a finite region of space or fall off sufficiently fast towards infinity.

The approach presented in this paper has various advantages that are favorable for
numerical calculations. First of all, the method is tailored for the treatment of the asymptotic
region such that the interior scheme is not necessarily modified. In fact, hyperboloidal
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foliations can be made to coincide with Cauchy-type foliations in the interior where the
conformal factor can be set to unity if desired [71]. In addition, the principal part of the
equations to be solved in the exterior domain is identical to the standard Einstein equations
which we know how to treat numerically for a large class of astrophysically interesting
configurations. Furthermore, the location of null infinity is known a priori simplifying
numerical outer boundary treatment and wave extraction significantly. The calculation of the
news function is in our coordinates very simple, because the solution is obtained directly in
Bondi coordinates at null infinity in contrast to the characteristic approach where the freedom
in the null coordinates is fixed in the interior of the spacetime [72, 73].

A successful implementation of the hyperboloidal approach would solve two major
problems in numerical relativity, namely the outer boundary problem and the wave extraction
problem. One should be aware, however, that many promising ideas appeared during the
history of numerical relativity which encountered major difficulties in practical implementation
that remain unsolved. In our case, the most delicate issue is whether the formally singular terms
can be numerically calculated in a stable manner. This question is open and is left for future
work. We emphasize, however, that the viability of a similar calculation was demonstrated
within the characteristic approach a long time ago [74].

It should be pointed out that there is a theoretical limitation to the hyperboloidal approach.
It does not allow us to calculate global spacetimes because spatial infinity is not included in the
computational domain. A detailed study of the asymptotic behavior of gravitational fields near
spatial infinity is difficult and an active area of research [64, 75–78]. It seems that one should
first achieve a successful implementation of the hyperboloidal problem for astrophysically
interesting configurations before attacking the more challenging problem of spatial infinity.
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