793 research outputs found
Initial boundary value problems for Einstein's field equations and geometric uniqueness
While there exist now formulations of initial boundary value problems for
Einstein's field equations which are well posed and preserve constraints and
gauge conditions, the question of geometric uniqueness remains unresolved. For
two different approaches we discuss how this difficulty arises under general
assumptions. So far it is not known whether it can be overcome without imposing
conditions on the geometry of the boundary. We point out a natural and
important class of initial boundary value problems which may offer
possibilities to arrive at a fully covariant formulation.Comment: 19 page
Gluing Initial Data Sets for General Relativity
We establish an optimal gluing construction for general relativistic initial
data sets. The construction is optimal in two distinct ways. First, it applies
to generic initial data sets and the required (generically satisfied)
hypotheses are geometrically and physically natural. Secondly, the construction
is completely local in the sense that the initial data is left unaltered on the
complement of arbitrarily small neighborhoods of the points about which the
gluing takes place. Using this construction we establish the existence of
cosmological, maximal globally hyperbolic, vacuum space-times with no constant
mean curvature spacelike Cauchy surfaces.Comment: Final published version - PRL, 4 page
Einstein equations in the null quasi-spherical gauge
The structure of the full Einstein equations in a coordinate gauge based on
expanding null hypersurfaces foliated by metric 2-spheres is explored. The
simple form of the resulting equations has many applications -- in the present
paper we describe the structure of timelike boundary conditions; the matching
problem across null hypersurfaces; and the propagation of gravitational shocks.Comment: 12 pages, LaTeX (revtex, amssymb), revision 18 pages, contains
expanded discussion and explanations, updated references, to appear in CQ
Positive mass theorems for asymptotically AdS spacetimes with arbitrary cosmological constant
We formulate and prove the Lorentzian version of the positive mass theorems
with arbitrary negative cosmological constant for asymptotically AdS
spacetimes. This work is the continuation of the second author's recent work on
the positive mass theorem on asymptotically hyperbolic 3-manifolds.Comment: 17 pages, final version, to appear in International Journal of
Mathematic
A new geometric invariant on initial data for Einstein equations
For a given asymptotically flat initial data set for Einstein equations a new
geometric invariant is constructed. This invariant measure the departure of the
data set from the stationary regime, it vanishes if and only if the data is
stationary. In vacuum, it can be interpreted as a measure of the total amount
of radiation contained in the data.Comment: 5 pages. Important corrections regarding the generalization to the
non-time symmetric cas
Trapped Surfaces in Vacuum Spacetimes
An earlier construction by the authors of sequences of globally regular,
asymptotically flat initial data for the Einstein vacuum equations containing
trapped surfaces for large values of the parameter is extended, from the time
symmetric case considered previously, to the case of maximal slices. The
resulting theorem shows rigorously that there exists a large class of initial
configurations for non-time symmetric pure gravitational waves satisfying the
assumptions of the Penrose singularity theorem and so must have a singularity
to the future.Comment: 14 page
A Remark on Boundary Effects in Static Vacuum Initial Data sets
Let (M, g) be an asymptotically flat static vacuum initial data set with
non-empty compact boundary. We prove that (M, g) is isometric to a spacelike
slice of a Schwarzschild spacetime under the mere assumption that the boundary
of (M, g) has zero mean curvature, hence generalizing a classic result of
Bunting and Masood-ul-Alam. In the case that the boundary has constant positive
mean curvature and satisfies a stability condition, we derive an upper bound of
the ADM mass of (M, g) in terms of the area and mean curvature of the boundary.
Our discussion is motivated by Bartnik's quasi-local mass definition.Comment: 10 pages, to be published in Classical and Quantum Gravit
Constant mean curvature solutions of the Einstein-scalar field constraint equations on asymptotically hyperbolic manifolds
We follow the approach employed by Y. Choquet-Bruhat, J. Isenberg and D.
Pollack in the case of closed manifolds and establish existence and
non-existence results for the Einstein-scalar field constraint equations on
asymptotically hyperbolic manifolds.Comment: 15 page
Late time behaviour of the maximal slicing of the Schwarzschild black hole
A time-symmetric Cauchy slice of the extended Schwarzschild spacetime can be
evolved into a foliation of the -region of the spacetime by maximal
surfaces with the requirement that time runs equally fast at both spatial ends
of the manifold. This paper studies the behaviour of these slices in the limit
as proper time-at-infinity becomes arbitrarily large and gives an analytic
expression for the collapse of the lapse.Comment: 18 pages, Latex, no figure
- …