47 research outputs found

    The surface of iron molybdate catalysts used for the selective oxidation of methanol

    Get PDF
    The oxidation of methanol to formaldehyde is a major chemical process carried out catalytically and iron molybdate is one of the major catalysts for this process. In this paper we explore the nature of the active and selective surfaces of iron molybdate catalysts and show that the effective catalysts comprise molybdenum rich surfaces. We conclude that it is therefore important to maximise the surface area of these active catalysts and to this end we have studied catalysts made using a new physical grinding method with oxalic acid. For super-stoichiometric materials (Fe:Mo = 1:2.2) the reaction data show that physical mixing produces effective catalysts, possibly offering an improvement over the conventional co-precipitation method

    Vanadium promoted molybdenum phosphate catalysts for the vapour phase partial oxidation of methanol to formaldehyde

    Get PDF
    The catalytic properties of (MoO2)2P2O7 promoted with vanadium have been investigated for the partial oxidation of methanol, and structure-activity relationships probed using a range of characterization techniques. All unpromoted and promoted molybdenum phosphate catalysts were active, with higher vanadium content achieving both high activity and high formaldehyde selectivity at reaction temperatures around 400 °C. The association between increasing vanadium content and the enhanced activity towards methanol oxidation was attributed to the formation of mixed phase catalysts, in particular VOHPO4·0.5H2O/VOPO4·2H2O with (MoO2)2P2O7. The dispersion of vanadium phosphate phases on the surface of (MoO2)2P2O7 was found to substantially enhance the catalytic properties of the molybdenum phosphate catalyst. The data from this study indicate that molybdenum phosphate based catalysts are promising candidates for selective oxidation, and hence worthy of further investigation

    Highly crystalline vanadium phosphate catalysts synthesized using poly(acrylic acid-co-maleic acid) as a structure directing agent

    Get PDF
    Vanadium phosphate catalysts have been widely studied for the selective oxidation of alkanes to a variety of products, including maleic and phthalic anhydride. More recently they are starting to find use as low temperature liquid phase oxidation catalysts. For all these applications the synthesis of the precursor is key to the performance of the final catalyst. Changes in the preparation procedure can alter the morphology, surface area, crystallinity, oxidation state and the phases present in the final catalyst which can all affect the selectivity and/or activity of the catalyst. Adding a diblock copolymer, poly(acrylic acid-co-maleic acid) (PAAMA), during the synthesis was found to influence the crystallinity and morphology of the VOHPO4·0.5H2O precursors obtained. An optimal level of copolymer was found to form precursors that showed a faster, more efficient, activation to the active catalyst, whereas high amounts of copolymer formed thin platelets, which were prone to oxidise to undesirable V5+ phases under reaction conditions, reducing the selectivity to maleic anhydride

    Novel cobalt zinc oxide Fischer-Tropsch catalysts synthesised using supercritical anti-solvent precipitation

    Get PDF
    Cobalt zinc oxide catalysts have been prepared by anti-solvent precipitation in supercritical CO2 and investigated for CO hydrogenation. Here we show how the textural and catalytic properties of the catalyst can be tailored by the addition of water to the initial solution of cobalt and zinc acetates in methanol. Characterization of the catalysts by powder X-ray diffraction, infra-red and Raman spectroscopy showed that in the absence of water a high surface area mixed acetate was produced which upon calcination formed wurtzite type Zn1−xCoxO and spinel type ZnxCo3−xO4. The addition of 5 vol.% water resulted in a phase separated Co3O4/ZnO catalyst and enhanced active cobalt surface area as a result of disruption of the solvent/CO2 phase equilibrium during precipitation

    Synthesis of high surface area CuMn2O4 by supercritical anti-solvent precipitation for the oxidation of CO at ambient temperature

    Get PDF
    A series of high surface area nanocrystalline copper manganese oxide catalysts have been prepared by supercritical anti-solvent (SAS) precipitation using CO2 and tested for the ambient temperature oxidation of CO. The catalysts were prepared by precipitation from an ethanol/metal acetate solution and the addition of small quantities of water was found to result in a mixed acetate precursor with surface areas >200 m2 g−1, considerably higher than those prepared by conventional precipitation methods. The surface area of the final calcined mixed oxide was found to be dependent upon the initial water concentration. XRD and FT-IR analysis indicated that the addition of water promoted the formation of carbonate species in the amorphous acetate precursor, with high resolution TEM and STEM showing the material to consist of spherical agglomerations of fibrous strings of ca. 30 nm length. This is in contrast to the material prepared in the absence of water, using the same SAS methodology, which typically yields quasi-spherical particles of 100 nm size

    Frontotemporal dementia and its subtypes: a genome-wide association study

    Get PDF
    SummaryBackground Frontotemporal dementia (FTD) is a complex disorder characterised by a broad range of clinical manifestations, differential pathological signatures, and genetic variability. Mutations in three genes—MAPT, GRN, and C9orf72—have been associated with FTD. We sought to identify novel genetic risk loci associated with the disorder. Methods We did a two-stage genome-wide association study on clinical FTD, analysing samples from 3526 patients with {FTD} and 9402 healthy controls. To reduce genetic heterogeneity, all participants were of European ancestry. In the discovery phase (samples from 2154 patients with {FTD} and 4308 controls), we did separate association analyses for each {FTD} subtype (behavioural variant FTD, semantic dementia, progressive non-fluent aphasia, and {FTD} overlapping with motor neuron disease FTD-MND), followed by a meta-analysis of the entire dataset. We carried forward replication of the novel suggestive loci in an independent sample series (samples from 1372 patients and 5094 controls) and then did joint phase and brain expression and methylation quantitative trait loci analyses for the associated (p<5 × 10−8) single-nucleotide polymorphisms. Findings We identified novel associations exceeding the genome-wide significance threshold (p<5 × 10−8). Combined (joint) analyses of discovery and replication phases showed genome-wide significant association at 6p21.3, \{HLA\} locus (immune system), for rs9268877 (p=1·05 × 10−8; odds ratio=1·204 95% \{CI\} 1·11–1·30), rs9268856 (p=5·51 × 10−9; 0·809 0·76–0·86) and rs1980493 (p value=1·57 × 10−8, 0·775 0·69–0·86) in the entire cohort. We also identified a potential novel locus at 11q14, encompassing RAB38/CTSC (the transcripts of which are related to lysosomal biology), for the behavioural \{FTD\} subtype for which joint analyses showed suggestive association for rs302668 (p=2·44 × 10−7; 0·814 0·71–0·92). Analysis of expression and methylation quantitative trait loci data suggested that these loci might affect expression and methylation in cis. Interpretation Our findings suggest that immune system processes (link to 6p21.3) and possibly lysosomal and autophagy pathways (link to 11q14) are potentially involved in FTD. Our findings need to be replicated to better define the association of the newly identified loci with disease and to shed light on the pathomechanisms contributing to FTD. Funding The National Institute of Neurological Disorders and Stroke and National Institute on Aging, the Wellcome/MRC Centre on Parkinson's disease, Alzheimer's Research UK, and Texas Tech University Health Sciences Center

    Mendelian randomization implies no direct causal association between leukocyte telomere length and amyotrophic lateral sclerosis

    Get PDF
    Funder: QingLan Research Project of Jiangsu for Outstanding Young TeachersFunder: Project funded by Postdoctoral Science Foundation of Xuzhou Medical UniversityFunder: Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) for Xuzhou Medical UniversityAbstract: We employed Mendelian randomization (MR) to evaluate the causal relationship between leukocyte telomere length (LTL) and amyotrophic lateral sclerosis (ALS) with summary statistics from genome-wide association studies (n = ~ 38,000 for LTL and ~ 81,000 for ALS in the European population; n = ~ 23,000 for LTL and ~ 4,100 for ALS in the Asian population). We further evaluated mediation roles of lipids in the pathway from LTL to ALS. The odds ratio per standard deviation decrease of LTL on ALS was 1.10 (95% CI 0.93–1.31, p = 0.274) in the European population and 0.75 (95% CI 0.53–1.07, p = 0.116) in the Asian population. This null association was also detected between LTL and frontotemporal dementia in the European population. However, we found that an indirect effect of LTL on ALS might be mediated by low density lipoprotein (LDL) or total cholesterol (TC) in the European population. These results were robust against extensive sensitivity analyses. Overall, our MR study did not support the direct causal association between LTL and the ALS risk in neither population, but provided suggestive evidence for the mediation role of LDL or TC on the influence of LTL and ALS in the European population
    corecore