13 research outputs found

    Menthol increases human glioblastoma intracellular Ca2+, BK channel activity and cell migration

    Get PDF
    This study examined the effect of menthol, an agonist for transient receptor potential melastatin 8 (TRPM8) ion channels, to increase intracellular Ca2+ concentration, [Ca2+]i, in human glioblastoma cells (DBTRG cells), which resulted in activation of the large-conductance Ca2+-activated K+ membrane ion channels (BK channels). Voltage ramps applied over 300 ms from -100 to 100 mV resulted in membrane currents with marked inwardly- and outwardly-rectifying components. Paxilline (2 μM) abolished the outwardly-rectifying current. Outwardly-rectifying on-cell patch currents were increased markedly by menthol (100 μM) added to the bath. The estimated on-cell conductance of these channels was 253 pS. Kinetic analysis showed that added menthol increased channel open probability and mean open frequency after 5 min. In a similar time course menthol increased [Ca2+]i, and this increase was abolished either by added paxilline, tetraethylammonium ion or by Ca2+-free external solution. Finally, menthol stimulated the rate of DBTRG cell migration into scratch wounds made in confluent cells, and this also was inhibited by paxilline or by tetraethylammonium ion. We conclude that menthol, a TRPM8 agonist, increases DBTRG cell [Ca2+]i that in turn activates membrane BK ion channels. Inhibition of BK channels by paxilline reverses menthol-stimulated increase of [Ca2+]i and of cell migration. Thus, BK channels function to maintain elevations in [Ca2+]i needed to sustain increases in DBTRG cell migration

    Menthol Increases Human Glioblastoma Intracellular CA\u3csup\u3e2+\u3c/sup\u3e, BK Channel Activity and Cell Migration

    Get PDF
    This study examined the effect of menthol, an agonist for transient receptor potential melastatin 8 (TRPM8) ion channels, to increase intracellular Ca2+ concentration, [Ca2+]i, in human glioblastoma cells (DBTRG cells), which resulted in activation of the large-conductance Ca2+-activated K+ membrane ion channels (BK channels). Voltage ramps applied over 300 ms from -100 to 100 mV resulted in membrane currents with marked inwardly- and outwardly-rectifying components. Paxilline (2 M) abolished the outwardly-rectifying current. Outwardly-rectifying on-cell patch currents were increased markedly by menthol (100 M) added to the bath. The estimated on-cell conductance of these channels was 253 pS. Kinetic analysis showed that added menthol increased channel open probability and mean open frequency after 5 min. In a similar time course menthol increased [Ca 2+]i, and this increase was abolished either by added paxilline, tetraethylammonium ion or by Ca2+-free external solution. Finally, menthol stimulated the rate of DBTRG cell migration into scratch wounds made in confluent cells, and this also was inhibited by paxilline or by tetraethylammonium ion. We conclude that menthol, a TRPM8 agonist, increases DBTRG cell [Ca2+]ithat in turn activates membrane BK ion channels. Inhibition of BK channels by paxilline reverses menthol-stimulated increase of [Ca2+]iand of cell migration. Thus, BK channels function to maintain elevations in [Ca2+]ineeded to sustain increases in DBTRG cell migration

    Accelerated surgery versus standard care in hip fracture (HIP ATTACK): an international, randomised, controlled trial

    Get PDF

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome

    Modeling habitat distribution from organism occurrences and environmental data: case study using anemonefishes and their sea anemone hosts

    Get PDF
    We demonstrate the KGSMapper (Kansas Geological Survey Mapper), a straightforward, web-based biogeographic tool that uses environmental conditions of places where members of a taxon are known to occur to find other places containing suitable habitat for them. Using occurrence data for anemonefishes or their host sea anemones, and data for environmental parameters, we generated maps of suitable habitat for the organisms. The fact that the fishes are obligate symbionts of the anemones allowed us to validate the KGSMapper output: we were able to compare the inferred occurrence of the organism to that of the actual occurrence of its symbiont. Characterizing suitable habitat for these organisms in the Indo-West Pacific, the region where they naturally occur, can be used to guide conservation efforts, field work, etc.; defining suitable habitat for them in the Atlantic and eastern Pacific is relevant to identifying areas vulnerable to biological invasions. We advocate distinguishing between these 2 sorts of model output, terming the former maps of realized habitat and the latter maps of potential habitat. Creation of a niche model requires adding biotic data to the environmental data used for habitat maps: we included data on fish occurrences to infer anemone distribution and vice versa. Altering the selection of environmental variables allowed us to investigate which variables may exert the most influence on organism distribution. Adding variables does not necessarily improve precision of the model output. KGSMapper output distinguishes areas that fall within 1 standard deviation (SD) of the mean environmental variable values for places where members of the taxon occur, within 2 SD, and within the entire range of values; eliminating outliers or data known to be imprecise or inaccurate improved output precision mainly in the 2 SD range and beyond. Thus, KGSMapper is robust in the face of questionable data, offering the user a way to recognize and clean such data. It also functions well with sparse datasets. These features make it useful for biogeographic meta-analyses with the diverse, distributed datasets that are typical for marine organisms lacking direct commercial value
    corecore