6,309 research outputs found

    Comment on "Support Vector Machines with Applications"

    Full text link
    Comment on "Support Vector Machines with Applications" [math.ST/0612817]Comment: Published at http://dx.doi.org/10.1214/088342306000000475 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Quantum communication using a bounded-size quantum reference frame

    Full text link
    Typical quantum communication schemes are such that to achieve perfect decoding the receiver must share a reference frame with the sender. Indeed, if the receiver only possesses a bounded-size quantum token of the sender's reference frame, then the decoding is imperfect, and we can describe this effect as a noisy quantum channel. We seek here to characterize the performance of such schemes, or equivalently, to determine the effective decoherence induced by having a bounded-size reference frame. We assume that the token is prepared in a special state that has particularly nice group-theoretic properties and that is near-optimal for transmitting information about the sender's frame. We present a decoding operation, which can be proven to be near-optimal in this case, and we demonstrate that there are two distinct ways of implementing it (corresponding to two distinct Kraus decompositions). In one, the receiver measures the orientation of the reference frame token and reorients the system appropriately. In the other, the receiver extracts the encoded information from the virtual subsystems that describe the relational degrees of freedom of the system and token. Finally, we provide explicit characterizations of these decoding schemes when the system is a single qubit and for three standard kinds of reference frame: a phase reference, a Cartesian frame (representing an orthogonal triad of spatial directions), and a reference direction (representing a single spatial direction).Comment: 17 pages, 1 figure, comments welcome; v2 published versio

    Dynamical Arrest in Attractive Colloids: The Effect of Long-Range Repulsion

    Full text link
    We study gelation in suspensions of model colloidal particles with short-ranged attractive and long-ranged repulsive interactions by means of three-dimensional fluorescence confocal microscopy. At low packing fractions, particles form stable equilibrium clusters. Upon increasing the packing fraction the clusters grow in size and become increasingly anisotropic until finally associating into a fully connected network at gelation. We find a surprising order in the gel structure. Analysis of spatial and orientational correlations reveals that the gel is composed of dense chains of particles constructed from face-sharing tetrahedral clusters. Our findings imply that dynamical arrest occurs via cluster growth and association.Comment: Final version: Phys. Rev. Lett. 94, 208301 (2005

    The Influence of Stigma Perceptions on Employees’ Claims Experiences for Psychological Injuries: Re-Examination of a Cross-Sectional Survey among Australian Police and Emergency Service Personnel

    Full text link
    While a large body of research assessed the contribution of mental health stigma on disclosure, treatment seeking, and recovery, limited research exists seeking to identify the relative contribution of stigma beliefs on workers’ compensation claims for psychological injury. Survey data of ambulance, fire and rescue, police, and state emergency service personnel (N = 1855, aged 45–54 years, 66.4% male) was re-examined to assesses the unique and combined associations of self-, personal, and workplace stigma with workers’ compensation claims experiences and recovery. Participants responded to self-report stigma items (predictor variables), perceived stress, fairness, and support perceptions of going through the claims process and its impact on recovery (outcome variables). Multiple regression analyses revealed that the combined stigma dimensions predicted about one fifth of the variance of claims and recovery perceptions. Organisational commitment beliefs and the self-stigma dimension of experiences with others were the two most important, albeit weak, unique predictors across outcomes. Given the small but consistent influences of organisational commitment beliefs and the self-stigma dimension of experiences with others, it seems warranted to apply workplace interventions that are looking to establish positive workplace contact and a supportive organisational culture to alleviate negative effects attributable to mental health stigma

    Universal continuous-variable quantum computation: Requirement of optical nonlinearity for photon counting

    Full text link
    Although universal continuous-variable quantum computation cannot be achieved via linear optics (including squeezing), homodyne detection and feed-forward, inclusion of ideal photon counting measurements overcomes this obstacle. These measurements are sometimes described by arrays of beam splitters to distribute the photons across several modes. We show that such a scheme cannot be used to implement ideal photon counting and that such measurements necessarily involve nonlinear evolution. However, this requirement of nonlinearity can be moved "off-line," thereby permitting universal continuous-variable quantum computation with linear optics.Comment: 6 pages, no figures, replaced with published versio

    Self-Consistent Measurement and State Tomography of an Exchange-Only Spin Qubit

    Full text link
    We report initialization, complete electrical control, and single-shot readout of an exchange-only spin qubit. Full control via the exchange interaction is fast, yielding a demonstrated 75 qubit rotations in under 2 ns. Measurement and state tomography are performed using a maximum-likelihood estimator method, allowing decoherence, leakage out of the qubit state space, and measurement fidelity to be quantified. The methods developed here are generally applicable to systems with state leakage, noisy measurements, and non-orthogonal control axes.Comment: contains Supplementary Informatio

    Quantum gates on hybrid qudits

    Get PDF
    We introduce quantum hybrid gates that act on qudits of different dimensions. In particular, we develop two representative two-qudit hybrid gates (SUM and SWAP) and many-qudit hybrid Toffoli and Fredkin gates. We apply the hybrid SUM gate to generating entanglement, and find that operator entanglement of the SUM gate is equal to the entanglement generated by it for certain initial states. We also show that the hybrid SUM gate acts as an automorphism on the Pauli group for two qudits of different dimension under certain conditions. Finally, we describe a physical realization of these hybrid gates for spin systems.Comment: 8 pages and 1 figur

    Measurement-based quantum computation in a 2D phase of matter

    Full text link
    Recently it has been shown that the non-local correlations needed for measurement based quantum computation (MBQC) can be revealed in the ground state of the Affleck-Kennedy-Lieb-Tasaki (AKLT) model involving nearest neighbor spin-3/2 interactions on a honeycomb lattice. This state is not singular but resides in the disordered phase of ground states of a large family of Hamiltonians characterized by short-range-correlated valence bond solid states. By applying local filtering and adaptive single particle measurements we show that most states in the disordered phase can be reduced to a graph of correlated qubits that is a scalable resource for MBQC. At the transition between the disordered and Neel ordered phases we find a transition from universal to non-universal states as witnessed by the scaling of percolation in the reduced graph state.Comment: 8 pages, 6 figures, comments welcome. v2: published versio

    Optical one-way quantum computing with a simulated valence-bond solid

    Full text link
    One-way quantum computation proceeds by sequentially measuring individual spins (qubits) in an entangled many-spin resource state. It remains a challenge, however, to efficiently produce such resource states. Is it possible to reduce the task of generating these states to simply cooling a quantum many-body system to its ground state? Cluster states, the canonical resource for one-way quantum computing, do not naturally occur as ground states of physical systems. This led to a significant effort to identify alternative resource states that appear as ground states in spin lattices. An appealing candidate is a valence-bond-solid state described by Affleck, Kennedy, Lieb, and Tasaki (AKLT). It is the unique, gapped ground state for a two-body Hamiltonian on a spin-1 chain, and can be used as a resource for one-way quantum computing. Here, we experimentally generate a photonic AKLT state and use it to implement single-qubit quantum logic gates.Comment: 11 pages, 4 figures, 8 tables - added one referenc

    Perturbations of the local gravity field due to mass distribution on precise measuring instruments: a numerical method applied to a cold atom gravimeter

    Full text link
    We present a numerical method, based on a FEM simulation, for the determination of the gravitational field generated by massive objects, whatever geometry and space mass density they have. The method was applied for the determination of the self gravity effect of an absolute cold atom gravimeter which aims at a relative uncertainty of 10-9. The deduced bias, calculated with a perturbative treatment, is finally presented. The perturbation reaches (1.3 \pm 0.1) \times 10-9 of the Earth's gravitational field.Comment: 12 pages, 7 figure
    corecore