315 research outputs found

    A novel fluorescent reporter CDy1 enriches for neural stem cells derived from the murine brain

    Get PDF
    Neurogenesis occurs continuously in two brain regions of adult mammals, underpinned by a pool of resident neural stem cells (NSCs) that can differentiate into all neural cell types. To advance our understanding of NSC function and to develop therapeutic and diagnostic approaches, it is important to accurately identify and enrich for NSCs. There are no definitive markers for the identification and enrichment of NSCs present in the mouse brain. Recently, a fluorescent rosamine dye, CDy1, has been identified as a label for pluripotency in cultured human embryonic and induced pluripotent stem cells. As similar cellular characteristics may enable the uptake and retention of CDy1 by other stem cell populations, we hypothesized that this dye may also enrich for primary NSCs from the mouse brain. Because the subventricular zone (SVZ) and the hippocampus represent brain regions that are highly enriched for NSCs in adult mammals, we sampled cells from these areas to test this hypothesis. These experiments revealed that CDy1 staining indeed allows for enrichment and selection of all neurosphere-forming cells from both the SVZ and the hippocampus. We next examined the effectiveness of CDy1 to select for NSCs derived from the SVZ of aged animals, where the total pool of NSCs present is significantly lower than in young animals. We found that CDy1 effectively labels the NSCs in adult and aged animals as assessed by the neurosphere assay and reflects the numbers of NSCs present in aged animals. CDy1, therefore, appears to be a novel marker for enrichment of NSCs in primary brain tissue preparations

    Microglia modulate hippocampal neural precursor activity in response to exercise and aging

    Get PDF
    Exercise has been shown to positively augment adult hippocampal neurogenesis; however, the cellular and molecular pathways mediating this effect remain largely unknown. Previous studies have suggested that microglia may have the ability to differentially instruct neurogenesis in the adult brain. Here, we used transgenic Csf1r-GFP mice to investigate whether hippocampal microglia directly influence the activation of neural precursor cells. Our results revealed that an exercise-induced increase in neural precursor cell activity was mediated via endogenous microglia and abolished when these cells were selectively removed from hippocampal cultures. Conversely, microglia from the hippocampi of animals that had exercised were able to activate latent neural precursor cells when added to neurosphere preparations from sedentary mice. We also investigated the role of CX(3)CL1, a chemokine that is known to provide a more neuroprotective microglial phenotype. Intraparenchymal infusion of a blocking antibody against the CX(3)CL1 receptor, CX(3)CR1, but not control IgG, dramatically reduced the neurosphere formation frequency in mice that had exercised. While an increase in soluble CX(3)CL1 was observed following running, reduced levels of this chemokine were found in the aged brain. Lower levels of CX(3)CL1 with advancing age correlated with the natural decline in neural precursor cell activity, a state that could be partially alleviated through removal of microglia. These findings provide the first direct evidence that endogenous microglia can exert a dual and opposing influence on neural precursor cell activity within the hippocampus, and that signaling through the CX(3)CL1-CX(3)CR1 axis critically contributes toward this process

    The identification of a novel isoform of EphA4 and ITS expression in SOD1G93A mice

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is characterized by the degeneration of motor neurons, leading to progressive muscle atrophy and fatal paralysis. Mutations in more than 20 genes, including full-length EphA4 (EphA4-FL), have been implicated in this pathogenesis. The present study aimed to identify novel isoforms of EphA4-FL and to investigate the expression of EphA4-FL and its isoforms in the superoxide dismutase 1 (SOD1) mutant mouse model of ALS. Two novel transcripts were verified in mouse and humans. In transfected cells, both transcripts could be translated into proteins, which respectively contained the N- and C-termini of EphA4-FL, referred as EphA4-N and EphA4-C. EphA4-N, which was expressed on the surface of transfected cells, was shown to act as a dominant negative receptor by significantly suppressing the activation of EphA4-FL in vitro. The expression of both EphA4-FL and EphA4-N was significantly higher in the nervous tissue of SOD1 compared to wild-type mice suggesting that both forms are modulated during the disease process

    Nerve growth factor signaling through p75 induces apoptosis in Schwann cells via a Bcl-2-independent pathway

    Get PDF
    Apoptosis is involved in the regulation of Schwann cell numbers during normal development and after axonal damage, but the molecular regulation of Schwann cell death remains unknown. We have used stably transfected rat Schwann cell lines to study the potential roles of nerve growth factor (NGF), the antiapoptotic protein Bcl-2 and the cytokine response modifier A (CrmA) in modulating Schwann cell death in vitro. Bcl-2 inhibited Schwann cell apoptosis induced by survival factor withdrawal, whereas CrmA did not. In contrast, Bcl-2-transfected Schwann cells were susceptible to apoptosis in response to exogenous NGF, whereas CrmA-expressing cell lines were resistant. Demonstration of high levels of the low-affinity neurotrophin receptor p75 but not the high-affinity TrkA receptor on the Bcl-2-transfected cell lines suggested that the NGF-induced killing was mediated by p75. This was confirmed by resistance of Schwann cells isolated from p75 knockout mice to the NGF-induced cell death. Nerve growth factor also promoted the death of wild-type mouse and rat Schwann cells in the absence of survival factor withdrawal. Endogenous Bcl-2 mRNA was expressed by wild-type Schwann cells in all conditions that promoted survival but was downregulated to undetectable levels after survival factor withdrawal. In conclusion, our results demonstrate the existence of two separate pathways that expedite apoptosis in Schwann cells: a Bcl-2-blockable pathway initiated on loss of trophic support, and a Bcl-2-independent, CrmA-blockable pathway mediated via the p75 receptor

    Latent stem and progenitor cells in the hippocampus are activated by neural excitation

    Get PDF
    The regulated production of neurons in the hippocampus throughout life underpins important brain functions such as learning and memory. Surprisingly, however, studies have so far failed to identify a resident hippocampal stem cell capable of providing the renewable source of these neurons. Here, we report that depolarizing levels of KCl produce a threefold increase in the number of neurospheres generated from the adult mouse hippocampus. Most interestingly, however, depolarizing levels of KCl led to the emergence of a small subpopulation of precursors (approximately eight per hippocampus) with the capacity to generate very large neurospheres (>250 Β΅m in diameter). Many of these contained cells that displayed the cardinal properties of stem cells: multipotentiality and self-renewal. In contrast, the same conditions led to the opposite effect in the other main neurogenic region of the brain, the subventricular zone, in which neurosphere numbers decreased by ~40% in response to depolarizing levels of KCl. Most importantly, we also show that the latent hippocampal progenitor population can be activated in vivo in response to prolonged neural activity found in status epilepticus. This work provides the first direct evidence of a latent precursor and stem cell population in the adult hippocampus, which is able to be activated by neural activity. Because the latent population is also demonstrated to reside in the aged animal, defining the precise mechanisms that underlie its activation may provide a means to combat the cognitive deficits associated with a decline in neurogenesis

    A light-front coupled cluster method

    Full text link
    A new method for the nonperturbative solution of quantum field theories is described. The method adapts the exponential-operator technique of the standard many-body coupled-cluster method to the Fock-space eigenvalue problem for light-front Hamiltonians. This leads to an effective eigenvalue problem in the valence Fock sector and a set of nonlinear integral equations for the functions that define the exponential operator. The approach avoids at least some of the difficulties associated with the Fock-space truncation usually used.Comment: 8 pages, 1 figure; to appear in the proceedings of LIGHTCONE 2011, 23-27 May 2011, Dalla

    Immature doublecortin-positive hippocampal neurons are important for learning but not for remembering

    Get PDF
    It is now widely accepted that hippocampal neurogenesis underpins critical cognitive functions, such as learning and memory. To assess the behavioral importance of adult-born neurons, we developed a novel knock-in mouse model that allowed us to specifically and reversibly ablate hippocampal neurons at an immature stage. In these mice, the diphtheria toxin receptor (DTR) is expressed under control of the doublecortin (DCX) promoter, which allows for specific ablation of immature DCX-expressing neurons after administration of diphtheria toxin while leaving the neural precursor pool intact. Using a spatially challenging behavioral test (a modified version of the active place avoidance test), we present direct evidence that immature DCX-expressing neurons are required for successful acquisition of spatial learning, as well as reversal learning, but are not necessary for the retrieval of stored long-term memories. Importantly, the observed learning deficits were rescued as newly generated immature neurons repopulated the granule cell layer upon termination of the toxin treatment. Repeat (or cyclic) depletion of immature neurons reinstated behavioral deficits if the mice were challenged with a novel task. Together, these findings highlight the potential of stimulating neurogenesis as a means to enhance learning

    Norepinephrine directly activates adult hippocampal precursors via beta(3)-adrenergic receptors

    Get PDF
    Adult hippocampal neurogenesis is a critical form of cellular plasticity that is greatly influenced by neural activity. Among the neurotransmitters that are widely implicated in regulating this process are serotonin and norepinephrine, levels of which are modulated by stress, depression and clinical antidepressants. However, studies to date have failed to address a direct role for either neurotransmitter in regulating hippocampal precursor activity. Here we show that norepinephrine but not serotonin directly activates self-renewing and multipotent neural precursors, including stem cells, from the hippocampus of adult mice. Mechanistically, we provide evidence that beta(3)-adrenergic receptors, which are preferentially expressed on a Hes5-expressing precursor population in the subgranular zone (SGZ), mediate this norepinephrine-dependent activation. Moreover, intrahippocampal injection of a selective beta(3)-adrenergic receptor agonist in vivo increases the number of proliferating cells in the SGZ. Similarly, systemic injection of the beta-adrenergic receptor agonist isoproterenol not only results in enhancement of proliferation in the SGZ but also leads to an increase in the percentage of nestin/glial fibrillary acidic protein double-positive neural precursors in vivo. Finally, using a novel ex vivo "slice-sphere" assay that maintains an intact neurogenic niche, we demonstrate that antidepressants that selectively block the reuptake of norepinephrine, but not serotonin, robustly increase hippocampal precursor activity via beta-adrenergic receptors. These findings suggest that the activation of neurogenic precursors and stem cells via beta(3)-adrenergic receptors could be a potent mechanism to increase neuronal production, providing a putative target for the development of novel antidepressants

    Enrichment increases hippocampal neurogenesis independent of blood monocyte-derived microglia presence following high-dose total body irradiation

    Get PDF
    Birth of new neurons in the hippocampus persists in the brain of adult mammals and critically underpins optimal learning and memory. The process of adult neurogenesis is significantly reduced following brain irradiation and this correlates with impaired cognitive function. In this study, we aimed to compare the long-term effects of two environmental paradigms (i.e. enriched environment and exercise) on adult neurogenesis following high-dose (10\ua0Gy) total body irradiation. When housed in standard (sedentary) conditions, irradiated mice revealed a long-lasting (up to 4 months) deficit in neurogenesis in the granule cell layer of the dentate gyrus, the region that harbors the neurogenic niche. This depressive effect of total body irradiation on adult neurogenesis was partially alleviated by exposure to enriched environment but not voluntary exercise, where mice were single-housed with unlimited access to a running wheel. Exposure to voluntary exercise, but not enriched environment, did lead to significant increases in microglia density in the granule cell layer of the hippocampus; our study shows that these changes result from local microglia proliferation rather than recruitment and infiltration of circulating Cxcr1 blood monocytes that subsequently differentiate into microglia-like cells. In summary, latent neural precursor cells remain present in the neurogenic niche of the adult hippocampus up to 8 weeks following high-dose total body irradiation. Environmental enrichment can partially restore the adult neurogenic process in this part of the brain following high-dose irradiation, and this was found to be independent of blood monocyte-derived microglia presence

    Prolactin stimulates precursor cells in the adult mouse hippocampus

    Get PDF
    In the search for ways to combat degenerative neurological disorders, neurogenesis-stimulating factors are proving to be a promising area of research. In this study, we show that the hormonal factor prolactin (PRL) can activate a pool of latent precursor cells in the adult mouse hippocampus. Using an in vitro neurosphere assay, we found that the addition of exogenous PRL to primary adult hippocampal cells resulted in an approximate 50% increase in neurosphere number. In addition, direct infusion of PRL into the adult dentate gyrus also resulted in a significant increase in neurosphere number. Together these data indicate that exogenous PRL can increase hippocampal precursor numbers both in vitro and in vivo. Conversely, PRL null mice showed a significant reduction (approximately 80%) in the number of hippocampal-derived neurospheres. Interestingly, no deficit in precursor proliferation was observed in vivo, indicating that in this situation other niche factors can compensate for a loss in PRL. The PRL loss resulted in learning and memory deficits in the PRL null mice, as indicated by significant deficits in the standard behavioral tests requiring input from the hippocampus. This behavioral deficit was rescued by direct infusion of recombinant PRL into the hippocampus, indicating that a lack of PRL in the adult mouse hippocampus can be correlated with impaired learning and memory
    • …
    corecore