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Cellular/Molecular

Microglia Modulate Hippocampal Neural Precursor Activity
in Response to Exercise and Aging

Jana Vukovic,' Michael J. Colditz,! Daniel G. Blackmore,' Marc J. Ruitenberg,' and Perry F. Bartlett!

'Queensland Brain Institute and 2School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia

Exercise has been shown to positively augment adult hippocampal neurogenesis; however, the cellular and molecular pathways mediating this
effect remain largely unknown. Previous studies have suggested that microglia may have the ability to differentially instruct neurogenesis in the
adult brain. Here, we used transgenic Csf1r-GFP mice to investigate whether hippocampal microglia directly influence the activation of neural
precursor cells. Our results revealed that an exercise-induced increase in neural precursor cell activity was mediated via endogenous microglia
and abolished when these cells were selectively removed from hippocampal cultures. Conversely, microglia from the hippocampi of animals that
had exercised were able to activate latent neural precursor cells when added to neurosphere preparations from sedentary mice. We also inves-
tigated the role of CX;CL1, a chemokine that is known to provide a more neuroprotective microglial phenotype. Intraparenchymal infusion of a
blockingantibody against the CX;CL1 receptor, CX;CR1, but not control IgG, dramatically reduced the neurosphere formation frequency in mice
thathad exercised. While an increase in soluble CX;CL1 was observed following running, reduced levels of this chemokine were found in the aged
brain. Lower levels of CX,CL1 with advancing age correlated with the natural decline in neural precursor cell activity, a state that could be partially
alleviated through removal of microglia. These findings provide the first direct evidence that endogenous microglia can exert a dual and
opposing influence on neural precursor cell activity within the hippocampus, and that signaling through the CX,CL1-CX,CR1 axis critically

contributes toward this process.

Introduction

Throughout adulthood, continuous birth of new neurons per-
sists in the subgranular zone (SGZ) of the hippocampal dentate
gyrus and the subventricular zone (SVZ) of the lateral ventricle
(Reynolds and Weiss, 1992; Richards et al., 1992). While SVZ
neurogenesis is important for the maintenance of olfactory func-
tions (Imayoshi et al., 2008; Mouret et al., 2009), in the SGZ this
process is thought to be critical for the ongoing hippocampal
plasticity that is required for learning and memory (Deng et al.,
2010). Although the production of new neurons declines progres-
sively with age, there is now evidence that the adult SGZ retains a
population of latent neural precursor cells (NPCs) that can be acti-
vated, thereby stimulating neurogenesis (Walker et al., 2008).

A variety of experience-based paradigms have been used to
experimentally induce neurogenesis within the hippocampus
(Gould and Tanapat, 1999), including environmental enrich-
ment and voluntary exercise. Rodents with access to a running
wheel exhibit significantly enhanced cell proliferation and neu-
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rogenesis within the SGZ, as well as improved performance in
spatial memory and learning tasks (van Praag et al., 1999a,b).
Importantly, voluntary exercise also counteracts the decline in
NPC activity that normally occurs with aging (Blackmore et al.,
2009; Jinno, 2011) and slows the associated cognitive impairment
(van Praag et al., 2005; Sahay et al., 2011).

The effect of exercise on cell proliferation is not restricted to
NPCs. Previous research has shown thata 10 d running paradigm
increases proliferation of both cortical and hippocampal micro-
glia (Ehninger and Kempermann, 2003; Olah et al., 2009). Micro-
glia are versatile modulators of neurogenesis, and their influence
on NPC activity is dependent on their activation status (Butovsky
et al., 2006; Ziv et al., 2006; Cacci et al., 2008; Choi et al., 2008).
Proinflammatory microglia are generally associated with reduced
neurogenesis, as in this state they produce reactive oxygen species
and nitric oxide, and release proinflammatory cytokines (Monje
et al., 2003; Nakanishi et al., 2007). Conversely, neuroprotective
microglia stimulate neurogenesis through the release of anti-
inflammatory cytokines and growth factors (Aarum et al., 2003;
Morgan et al., 2004; Battista et al., 2006; Butovsky et al., 2006;
Walton et al., 2006; Ziv et al., 2006; Deierborg et al., 2010). How-
ever, the cellular and molecular pathways that mediate the posi-
tive effects of voluntary exercise are largely unknown, and
whether exercise-induced microglial proliferation and/or altered
activation status contribute to increased NPC activity also re-
mains unclear (Vukovic et al., 2011). In addition, most studies
that have investigated the role of microglia in adult hippocampal
neurogenesis have been primarily correlative and a direct effect of
microglia on NPCs is yet to be demonstrated. In this study, we
therefore sought to address this issue by using transgenic models
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to investigate whether microglia have a direct regulating effect on
the activity of adult hippocampal NPCs in response to voluntary
exercise and aging.

Materials and Methods

Animals

We took advantage of CsfIr-GFP (MacGreen) transgenic mice to eluci-
date the role of microglia in NPC activity. In these mice, the coding
sequence for the reporter gene green fluorescent protein (GFP) is ex-
pressed under the restricted control of the macrophage-specific CsfIr
gene (Sasmono et al., 2003); CsfIr encodes the receptor for macrophage
colony-stimulating factor 1, one of the earliest genes expressed in the
macrophage lineage. In Cx,cr1¢” mice, GFP is knocked in at the mutant
Cxscrl locus (Jungetal., 2000), resulting in GFP expression under Cx;crl
promoter control and deficiency in this chemokine receptor when using
Cx;cr 198 knock-in mice. Csflr-GFP and Cx,crI¥? mice were back-
crossed for >10 generations onto a C57BL/6] background. Mice used in
this study were adult females, all of which were 6—8 weeks of age at the
start of the exercise paradigm unless otherwise specified. Animals were
housed in pairs, either with or without access to the running wheel; these
groups are termed runner and nonrunner mice, respectively, throughout
this study. All experiments were conducted in accordance with the Aus-
tralian Code of Practice for the Care and Use of Animals for Scientific
Purposes, with approval from the University of Queensland Animal Eth-
ics Committee. Animals were maintained on a 12 h light/dark cycle with
food and water provided ad libitum.

Immunostaining

GFP (Vector Laboratories) and Ibal (ionized calcium binding adaptor
molecule 1; Wako Chemical) antibodies were used to confirm that the
GFP-positive (GFPP°) cells in the CsfIr-GFP mice were in fact microglia.
For this, Csf1r-GFP mice (8 weeks old; n = 2) were deeply anesthetized
with sodium pentobarbitone (150 mg/kg; Virbac) and transcardially per-
fused with 10 ml of PBS, pH 7.5, followed by 30 ml of 10% neutral
buffered formalin, pH 7.5. The brains were postfixed in formalin, cryo-
protected in 30% sucrose, and sectioned at 40 um thickness using a
sledge vibratome. All staining was done on free-floating sections (one in
six series) through the entire hippocampus. Sections were washed three
times for 10 min at room temperature (RT) and then incubated for 1 hin
a blocking solution (1% BSA, 0.2% Triton X-100 in PBS). Sections were
then left overnight at 4°C immersed in diluent containing monoclonal
mouse anti-GFP (1:200) and rabbit anti-mouse Ibal (1:250). The follow-
ing day, sections were washed and incubated for 1 h at RT with goat
anti-mouse Alexa Fluor 488 (1:500; Invitrogen) and goat anti-rabbit Al-
exa Fluor 546 (1:500; Invitrogen). Sections were washed three times in
PBS at RT (5 min per wash), with the nuclear stain DAPT (1:1000; Invit-
rogen) included in the final wash. Sections were then immediately
mounted in Dako fluorescent mounting medium.

Bromodeoxyuridine staining. To quantify hippocampal precursor pro-
liferation and neurogenesis in young and aged wild-type and Cx,cr187/<?
mice, immunostaining for 5-bromo-2’-deoxyuridine (BrdU) and dou-
blecortin (DCX) was performed. Adult (~8-week-old) wild-type (n = 3)
and Cx,crI¥?® (n = 4) animals were given a single intraperitoneal
injection of the thymidine analog BrdU (100 mg/kg; Sigma-Aldrich) 2 h
before being killed. To visualize proliferating cells in aged (20-month-
old) animals, wild-type and Cx,crI1¥P/% animals were injected with BrdU
once daily for 5 consecutive days at consistent time points and killed 48 h
after the final BrdU injection. Brain tissue was then processed and im-
munostained as described above; however, an additional acid treatment
step was included, where sections were treated in 1N HCl at 45°C for 20
min, washed in 0.1 M boric acid, pH 7.4, and then incubated overnight at
4°C in a rat anti-BrdU antibody (1:500; AbCam) and a primary rabbit
anti-DCX antibody (1:500; AbCam) diluted in PBS, 10% normal goat
serum, and 0.2% Triton X-100. The secondary antibodies goat anti-rat
Alexa Fluor 568 (1:1000; Invitrogen) and goat anti-rabbit Alexa Fluor
647 (1:1000; Invitrogen) were then applied as appropriate. Similar pro-
cedures were used to investigate microglia proliferation under the vari-
ous experimental conditions, for which colocalization of BrdU with GFP
or Ibal staining was assessed.
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Imaging and quantification. Images were taken at 20X magnification
using a Zeiss Axio Imager microscope and AxiocamMRm/3 camera to-
gether with AxioVision Software (Zeiss, version 4.8.2). To determine the
number of BrdU-positive (BrdUP°*) and DCX-positive (DCXP*) cells
within each section, Z-stacks were taken at 1.75 um intervals throughout
the entire 40 wm section.

Hippocampal cell preparations

Mice were killed by cervical dislocation, their brains immediately re-
moved, and the hippocampus dissected. Adult hippocampal tissue was
digested by incubation in a mixture containing 0.1% papain (Worthing-
ton Biochemical Corporation) and 0.1% DNasel (Roche Australia) in
HBSS (Thermo Scientific) for 16 min at 37°C, triturating twice during
the incubation period. Next, the tissue was centrifuged at 100 X g for 5
min, after which the pellet was resuspended and washed twice in 2 ml of
neurosphere growth medium: mouse NeuroCult NSC basal medium
containing mouse NeuroCult NSC proliferation supplements (Stem Cell
Technologies), 2% BSA (Invitrogen), and 2 pg/ml heparin (Sigma).
The medium also included 20 ng/ml purified mouse receptor-grade
epidermal-like growth factor (BD Biosciences) and 10 ng/ml recombi-
nant bovine fibroblast growth factor-2 (Roche). The solution was then
mechanically triturated until smooth and filtered through a 40 um cell
sieve (Falcon; BD Biosciences) to obtain a single cell suspension, which
was further processed using fluorescence-activated cell sorting (FACS).
Snapshots of GFP P°® hippocampal microglia, counterstained for 5 min at
RT with DRAQS5 nuclear dye (1:1000; Abcam) were obtained using AM-
NIS ImageStream 100.

Fluorescence-activated cell sorting and culturing procedures

To deplete microglia from hippocampal cells cultures, dissociated cells
were sorted using a FACSVantage SE DiVa sorter (BD Biosciences). Six to
eight hippocampi were used per preparation to obtain a single-cell sus-
pension; GFPP°* cells (i.e., microglia) were removed from cell cultures
(i.e., microglia-depleted cultures), whereas the control preparations were
simply passed through the cell sorter. The cells were sorted into 24-well
plates (30,000 events/well) containing 2 ml of neurosphere medium.

Hippocampal cell suspensions were depleted of microglia and plated
at 20,000 events/well. Next 10,000 GFPP°* cells derived from either non-
runner or runner mice were added to the wells containing microglia-
depleted suspensions. To test the effect of CX;CL1, recombinant mouse
CX,CL1 (R&D Systems) was added to the cultures to produce concen-
trations ranging from 10 to 400 ng/ml. The cells were grown in neuro-
sphere growth medium and incubated at 37°C in a humidified 5% CO,
incubator for 14 d. After the 2 week incubation, neurospheres were mea-
sured under a bright-field microscope using an eyepiece graticule. Neu-
rospheres with a diameter of =40 wm were counted. Where appropriate,
neurosphere numbers were normalized against the matching control and
thus expressed as the percentage change for individual experiments.

BrdU-positive cell counts using FACS. Animals were provided with ac-
cess to the running wheel for a period of 2 weeks, during which time
BrdU was administered in the drinking water. Whole hippocampi were
analyzed by FACS as previously described (Catts et al., 2008; Colditz et
al., 2010). Briefly, the hippocampus was dissociated and a single-cell
suspension prepared, as described above. The cell preparation was then
fixed with ethanol, and cells were stained using the nuclear marker
7-aminoactinomycin D (Invitrogen) to obtain the total number of
cells in the preparation. To obtain the number of proliferating cells,
phycoerythrin-conjugated anti-BrdU antibody (BD PharMingen)
staining was performed according to the manufacturer’s instructions.
The cell suspension was then analyzed using an LSRII flow cytometer
(BD Biosciences).

MHCII staining. MHCII-positive cells were quantified, analyzed, and
sorted using FACS. In brief, cells were incubated with unconjugated rat
anti-CD16/32 (1:100; BD PharMingen) for 5 min at RT, followed by
incubation with anti-I-A/I-E antibody (1:200) for 15 min at RT. The cells
were washed once in fresh medium before analysis and/or FACS.

Intraparenchymal infusion of CX;CRI1 blocking antibody
Adult CsfIr-GFP mice were anesthetized via intraperitoneal injection of
ketamine (100 mg/kg) and xylazine (10 mg/kg), after which an osmotic
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Figure 1. Characterization of hippocampal transgene expression and neurosphere formation frequency in Csf1r-GFP mice. 4,
Photomicrograph showing the adult hippocampus of a (sf7r-GFP mouse. Note that GFPP* cells display the typical ramified
morphology characteristic of brain microglia. B, Double-immunofluorescence staining for Iba1 (red) and GFP (green) confirmed
thatthe GFP P** cells were indeed microglia. Cell nuclei are shownin blue. €, GFP ** cells formed a discrete population of cells within
hippocampal cell suspensions from Csf7r-GFP mice, constituting ~10% of all cells. D, Photomicrographs of single Drag5 ***/GFP P*
cells and Drag5 P**/GFP " cells from dissociated Csf7r-GFP hippocampus, taken during flow cytometry. Note the morphological
homogeneity of sorted microglia. Scale bar, 160 wm.
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Figure 2.  Effects of voluntary exercise on microglial proliferation and neural precursor cell activity. A, The total number of

GFP P hippocampal microglia was not significantly increased as a result of exercise (n = 10). B, Flow cytometry also revealed a
significant decrease in the median intensity of GFP fluorescence following a 2 week running period, suggesting reduced Csf1r-
driven transgene expression under this experimental condition (*p << 0.05; n = 3). C, Running (R) significantly increased the
number of DCX P** cells in the dentate gyrus of the adult mouse hippocampus compared with nonrunner (NR) controls (*p < 0.05,
n = 5 per experimental condition). D, E, Similarly, significantly greater numbers of BrdU " cells (D) and neurospheres (E) were
observed following voluntary running (*p << 0.05, n = 3-5 per experimental condition). R, Runner mice; NR, Nonrunner mice.

minipump cannula (Alzet) was inserted directly into the hilus region of
the hippocampus (stereotaxic coordinates relative to bregma: anterior/
posterior, —1.8 mm; medial/lateral, —1.0 mm; dorsal/ventral, —1.7
mm). Experimental mice received 5 ug of a-CX;CR1 (Torrey Pines Bio-
labs; n = 8) (Bachstetter et al., 2011) or control IgG (Sigma-Aldrich; n =

J. Neurosci.,, May 9, 2012 - 32(19):6435— 6443 + 6437

6 animals) per day (flow rate of 0.11 ul/h) over
a2 week period, during which time the animals
had access to a running wheel. After comple-
tion of the infusion period, the mice were
killed, hippocampi were dissected, and cell
preparations from two animals were pooled for
each experimental repeat. Neurospheres were
cultured in either the presence or absence of
GFPP®* microglia, which were sorted using
FACS, as detailed above.

ELISA

A mouse CX;CLI ELISA Quantikine (MCX310,
R&D Systems) was used, according to the man-
ufacturer’s instructions, to determine soluble
CX,CL1 concentrations in the hippocampus
and serum. Dissected hippocampi were snap
frozen in cooled isopentane and stored at
—80°C. On the day of the assay, frozen hip-
pocampal tissue was thawed on ice. Next, to
create a single-cell suspension, the tissue was
triturated 15 times in Tris-buffered saline, pH
7.4, containing protease inhibitor mixture
(Sigma-Aldrich) and EDTA. Supernatant con-
taining soluble CX;CL1 was collected after
centrifugation at 1000 X g for 10 min at 4°C.

To measure serum CX;CL1 levels, blood was
collected transcardially at the time mice were
killed and was allowed to clot at 4°C for 4 h,
after which the sample was centrifuged at
2000 X gfor 20 min at 4°C. Serum was isolated,
and a protease inhibitor mixture was added
(10% total serum volume; Sigma). Serum sam-
ples were then stored at —20°C until the ELISA
was performed. All ELISA samples were run in
duplicate.

Absorbance was determined using a model
microplate reader at wavelengths of 450 and
540 nm as per the manufacturer’s instructions.
A standard curve was developed using Graph-
pad Prism (version 5.0c) and linear-regression
analysis applied to determine the concentra-
tion of CX;CL1 present. Total protein concen-
tration was determined using a BCA protein
assay kit (Pierce Biotechnology) according to
the manufacturer’s instructions. Absorbance
was measured with a PolarSTAR Optima spec-
trophotometer (BMG Labtech).

Statistical analysis

Statistical analysis was performed using
GraphPad Prism (version 5.0c). Data were an-
alyzed using an unpaired two-tailed Student’s ¢
test or a one-way ANOVA with Newman-—
Keuls post hoc test, as appropriate. Values are
expressed as the mean = SEM with significance
determined at p < 0.05.

Results

Microglia regulate neural precursor
activation following running

To selectively isolate microglia, we took
advantage of CsfIr-GFP transgenic mice.
In cross sections of adult brain tissue,

GFPP® cells displayed the typical ramified morphology that is
characteristic of brain microglia (Fig. 1 A). Double immunofluo-
rescence staining with the marker Ibal confirmed all GFPP** cells
to be microglia, including those observed in the hippocampus
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(Fig. 1 A, B). We next used FACS to isolate
microglia from hippocampal cell prepara-
tions. GFPP*° cells formed a discrete pop-
ulation  within  hippocampal  cell
suspensions from Csflr-GFP mice (Fig.
1C). The GFPP®® cells accounted for
~10% of the total cell population. Sample
snapshots of nucleated (DRAQ57°%) GFP-
PO cells, taken during flow cytometric analy-
sis, are shown in Figure 1 D. No neurosphere
formation was observed when the GFPP** mi-
croglia were sorted and cultured in neuro-
sphere medium (data not shown).

Following running, the overall number
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Runner mouse
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of GFPP®® microglia was not significantly
different between runner and nonrunner
mice, although a trend toward higher
numbers of GFPP®* cells was observed in
runner animals (Fig. 2A). The median in-
tensity of GFP fluorescence within the
population of hippocampal microglia was
reduced by 47% in runner animals, indi-
cating reduced expression of CsfIr in re-
sponse to voluntary exercise (Fig. 2B). As
anticipated, DCXP* and BrdUP®** cell
numbers were significantly increased, by
67 = 10% and 74 * 10%, respectively, in
the hippocampus of runners (p = 0.004
and p = 0.017, respectively) (Fig. 2C,D).
Furthermore, when hippocampal cells
were sorted and cultured for a period of
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Microglia mediate the beneficial effects of exercise on NPC activity. A, Schematic diagram of the experimental

14 d, a significant increase (37.3 * 7%;
p = 0.001) in the number of neurospheres
was observed in cultures derived from the
hippocampi of runners compared with
nonrunner controls (Fig. 2E).

To address whether microglia play a
role in the increase in the number of neu-
rospheres obtained following running,
we selectively depleted GFPP** microglia
from hippocampal neurosphere prepara-
tions of runner and nonrunner mice.
Conversely, we also isolated GFPP** mi-
croglia from runner and nonrunner hip-

paradigm used to assess the role of hippocampal microglia in NPC activation following running. In brief, hippocampi from exper-
imental CsfTr-GFP mice were dissociated, after which GFP P** microglia were either sorted as a purified cell population or depleted
from neurosphere preparations through FACS. B, Hippocampal cell preparations from nonrunner mice (NR) and runner (R) mice
were split in half such that microglia MG could be removed from part of the obtained suspension. NR w/o MG, Nonrunner without
microglia; R w/o MG, runner without microglia. Depletion of microglia from nonrunner hippocampal cultures did not affect the
neurosphere-forming frequency compared with baseline (p > 0.05; n = 5 per experimental condition). Note, however, that
depletion of microglia from hippocampal neurosphere cultures completely annulled the positive effect of voluntary exercise on NPC
activity (*p << 0.05; n = 5 per experimental condition). Removal of MHCII*** microglia from cell preparations of runner hip-
pocampi resulted in a further increase in the frequency of neurosphere formation (*p << 0.05; n = 6 per experimental condition),
suggesting that MHCII*** microglia negatively control NPC activity. €, Hippocampal cell preparations were depleted of microglia
and cocultured with microglia derived from nonrunners and runners. NR MG, nonrunner microglia; R MG, runner microglia.
Addition of microglia from runner mice resulted in a significantly greater number of neurospheres in hippocampal cell cultures from
sedentary mice that were depleted of endogenous microglia relative to controls in which microglia from nonrunner mice were
added (*p << 0.05; n = 7 per experimental condition).

pocampi and added these to microglia-
depleted neurosphere cultures of naive control mice. A schematic
of these experiments is shown in Figure 3A.

Depletion of GFPP** microglia from hippocampal cell suspen-
sions of nonrunner mice did not alter precursor activation, based
on the observation that the frequency of neurosphere formation
was not significantly different from that in the control. However,
removal of GFPP® microglia from hippocampal neurosphere
preparations of runner mice abolished the effect of voluntary
exercise on the neurosphere formation frequency, causing a sig-
nificant 30% reduction (n = 5, p < 0.05) in neurosphere num-
bers compared with the cultures in which microglia were retained
(Fig. 3B). These data suggest that voluntary exercise changes the
function of microglia, which in turn contributes to the activation
of NPCs.

As a previous study had reported a positive correlation be-
tween neurogenesis and MHCII expression under environmen-
tally enriched conditions (Ziv et al., 2006), we next depleted
GFPP**MHCIIP* microglia from hippocampal cell cultures of

both nonrunner and runner mice via FACS. Selective removal of
these cells resulted in a significant further increase (p < 0.05) in
neurosphere number in runner mice (Fig. 3B), but not in non-
runner animals. Thus, GFPP*MHCIIP*® cells appear to nega-
tively regulate, rather than stimulate, neural precursor activation
following running. Additional analysis showed that the propor-
tion of MHCIIP®® microglia was reduced by 37% in animals with
access to the running wheel compared with nonrunner mice. This
result suggests that subpopulations of microglia exert differential
effects on NPC activation.

To further investigate this possibility, we selectively isolated
GFPP®* microglia from the hippocampus of either runner or
nonrunner mice and added them to hippocampal cell prepara-
tions of nonrunner control mice that were depleted of microglia.
In line with our previous findings, the addition of microglia from
runner mice increased the neurosphere formation frequency by
57 * 20% (n = 7 per group, p = 0.02) (Fig. 3C). This highlights
the beneficial influence of voluntary exercise on microglia and



Vukovic et al. e Microglia Modulate Hippocampal Precursor Cells

87 1501
g 67
£
£ * £ 1004 *
== (2]
3 &
B 50
@ o 8
0- 0
WT KO WT Ko
2.0 2.5
2_ -
£ 1.54 g 20
E E
2 3 1.5
éfg 1.0 8 ;
8
) 1.04
B =3
0-57 0.5
0.0- 0.0-
WT KO WT KO

Figure 4.  (X;CR1 deficiency negatively affects adult hippocampal neurogenesis. A-D,
Cr,cr197/9% (K0) hippocampi had significantly lower BrdU " and DCX P cell numbers com-
pared with their wild-type (WT) counterparts in young (2-month-old) (4, B) and aged (20-
month-old) (C, D) animals (*p << 0.05; n = 3—4 per experimental condition).

reveals a novel role for these cells in mediating exercise-induced
activation of NPCs.

Is CX3CL1 involved in regulating microglia-dependent
precursor activation following running?

Having established a critical role for microglia in mediating the
beneficial effects of exercise on NPC activation, we next sought to
unravel the underlying molecular mechanism that regulates
microglia function in relation to neural precursor activation.
Previous reports have highlighted that signaling through the
CX;CR1-CX;CL1 axis results in more neuroprotective microglia
(Cardona et al., 2006), with positive modulation of hippocampal
neurogenesis (Bachstetter et al., 2011). Using double-immuno-
fluorescent staining procedures, we found that the total number
of BrdUP®* (i.e., proliferating) microglia was increased in the
hippocampus of runner wild-type mice (runner: 15.50 * 3.78
cells; nonrunner: 4.00 = 0.91 cells; n = 4 per group; p = 0.03),
which is similar to the observations of Olah et al. (2009). How-
ever, as these cells represent only a very small proportion of the
total number of microglia, the overall number was not signifi-
cantly changed (Fig. 2A). The number of BrdUP®* microglia in
runner and nonrunner Cx;cr1¥?#® mice [hereafter referred to as
knock-out (KO) mice] were not significantly different from each
other (nonrunner KO: 14.00 = 1.08; runner KO: 16.25 * 1.65
cells; n = 4 per group; p = 0.30) and similar to the number of
double-positive cells seen in wild-type runner mice.

In line with Bachstetter et al. (2011), we confirmed reduced
hippocampal neurogenesis in 2-month-old KO mice. An ~25%
decrease in the density of BrdUP** cells (p = 0.032) (Fig. 4A) and
DCXP* cells (p = 0.036) (Fig. 4 B) was observed in the SGZ of the
KO animals compared with their wild-type counterparts. Simi-
larly, aged (20-month-old) KO animals had significantly fewer
BrdUP® cells (~65% less) than wild-type animals (p = 0.049)
(Fig. 4C) in the SGZ and the granule cell layer. The total number
of DCXP* cells was also reduced to ~60% of that observed in the
wild-type mice (p = 0.037) (Fig. 4D). The number of BrdUP®".
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DCXP cells within the SGZ of aged KO animals was also signif-
icantly reduced compared with that in wild-type controls (0.43 *
0.07 vs 0.17 = 0.03 cells/mm; n = 4 per group; p = 0.01). Thus,
deficiency in CX;CR1 results in impaired hippocampal neuro-
genesis in both young and aged mice.

To examine a putative role for CX;CL1-CX,CR1 signaling in
neural precursor activation following exercise, we next measured
the levels of soluble CX;CL1 in the hippocampus of both young
and aged animals. CX;CL1 levels were significantly reduced in
12- and 18-month-old nonrunner mice (by 22% and 20%, re-
spectively) compared with young (2-month-old) animals (p <
0.05) (Fig. 5A). This reduction in soluble CX;CL1 levels within
the hippocampus thus correlated with the age-related reduction
in NPC activity. We therefore reasoned that if soluble CX;CL1
levels were responsible for mediating, atleast in part, the exercise-
dependent effect of microglia on NPC activation, it should be
possible to detect an increase in soluble CX;CL1 levels after vol-
untary exercise. Indeed, following a running period of 14 d, the
levels of soluble CX;CL1 were significantly increased in the hip-
pocampus of the runners when compared with nonrunner con-
trols (p = 0.039) (Fig. 5B). This increase in soluble CX;CL1 levels
was specific to the hippocampus, as no concomitant increase in
serum levels was observed (data not shown). To examine whether
voluntary exercise could also counter the decline in soluble
CX;CL1 levels observed within the aging hippocampus, 12-
month-old wild-type mice were allowed access to a running
wheel. After 14 d, a nonsignificant trend toward increased levels
of soluble CX;CL1 was observed in runners compared with non-
runner controls (data not shown). However, following an ex-
tended running period of 28 d, a significant increase in soluble
CX;CL1 was observed (p = 0.004) (Fig. 5C), with levels being
restored to those observed in young (2-month-old) mice. Thus,
running increases soluble CX;CL1 levels in the hippocampus.

We next employed a CX;CR1 blocking antibody to disrupt
local CX;CL1 signaling in the hippocampus. Intraparenchymal
infusion of a-CX;CRI blocking antibody over a 2 week running
period reduced neurosphere numbers by 60% compared with
IgG infusion (p < 0.05) (Fig. 6A). The importance of microglia
in mediating the beneficial effects of voluntary exercise was again
confirmed through their depletion, after which a reduction in
neurosphere numbers was observed. However, there was no dif-
ference in neurosphere numbers between a-CX;CR1- and IgG-
infused animals following depletion of microglia (14 =3 vs 18 *
3 neurospheres; p > 0.05), indicating that the negative effect of
blocking the CX;CL1-CX;CR1 signaling pathway was microglia
dependent. No difference in the number of GFPP** microglia was
observed between the experimental conditions (5.87 = 1.15% vs
591 = 1.37%).

We next sought to confirm in vitro that CX;CL1 was indeed
one of the factors mediating the effect exerted by hippocampal
microglia on NPC activity following running, hypothesizing that
the presence of this chemokine within the culture medium in
such a scenario would increase neurosphere formation. Indeed,
the addition of recombinant CX;CLI to hippocampal neuro-
sphere cultures increased the activation of neural precursors in a
dose-dependent manner (Fig. 6 B). A concentration of 100 ng/ml
CX,CL1 was selected as the optimal dose with which a significant
increase (18.1 * 4.9%, p = 0.003) in the number of neurospheres
was observed over baseline values. The positive effect of CX;CL1
addition on NPC activity was abolished when microglial cells
were depleted from hippocampal neurosphere cultures; in the
absence of microglia, neurosphere numbers were reduced by
54.10 = 12% (p = 0.006) (Fig. 6C). The addition of CX;CLI to
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neurosphere cultures from hippocampi of A
CX;CR1-deficient mice did not change 41
the neurosphere-forming frequency, con-
firming that the observed effect was in-
deed mediated via signaling through
CX,CR1 (Fig. 6 D). These data thus indi-
cate that the effect of CX;CL1 signaling on
NPCs is mediated through CX;CR1P°*
microglia.

CX3CL1 pg/ug

Microglia suppress neural precursor
cell activity in the aged brain

Finally, as a reduction in NPC activation is
a naturally occurring event associated
with aging (Walker et al., 2008), we also
investigated whether changed microglial
function contributes to this phenomenon.
We first reconfirmed the age-related de-
cline in neurosphere formation frequency
in aged (9-month-old) mice compared
with young (2-month-old) wild-type
mice. The number of neurospheres declined significantly (by
91%) between 2 and 9 months of age (Fig. 7A). To assess whether
an altered, perhaps more proinflammatory, activation profile of
microglia within the aging brain (Frank et al., 2006; Henry et al.,
2009) contributes to the decline in NPC activation, we depleted
microglia from hippocampal neurosphere cultures of both young
and aged mice (Fig. 7B). As in our earlier experiments, the deple-
tion of microglia from hippocampi of young animals had no
significant effect on neurosphere number. However, the deple-
tion of microglia from aged hippocampi resulted in a doubling of
neurosphere numbers in 9-month-old animals (p = 0.001; Fig.
7B). These findings indicate that microglia in the aged brain con-
tribute to suppression of NPC activity. Addition of aged (24-
month-old) nonrunner microglia to hippocampal neurosphere
preparations of young mice did not result in a significant decline
in neurosphere numbers (2-month-old mice: 100 = 8 neuro-
spheres; 24-month-old mice: 87 = 12 neurospheres; n = 6; p =
0.48) (Fig. 7C), which may reflect the high intrinsic growth po-
tential of NPCs at this age.

Figure5.

Discussion

In the present study, we aimed to better understand the role of
microglia in NPC activity under physiological conditions that are
known to influence neurogenesis: exercise and aging. We took
advantage of CsfIr-GFP transgenic mice to develop a novel ex vivo
model system in which microglia could be selectively depleted or,
alternatively, isolated by flow cytometry and subsequently added
to neurosphere cultures (Fig. 3A). In doing so, we were able to
show that endogenous hippocampal microglia influence NPC
activity following a 2 week voluntary running paradigm. Con-
versely, the addition of hippocampal microglia isolated from
mice allowed to exercise voluntarily for 2 weeks resulted in acti-
vation of the NPC population and an increase in the neu-
rosphere-forming frequency in preparations from sedentary
mice. Depletion of microglia from neurosphere preparations of
aged sedentary mice partially alleviated the reduction in NPC
activity that is naturally observed with aging. We were also able to
show that voluntary exercise increased soluble CX3CL1 protein
levels within the hippocampus, whereas intraparenchymal infu-
sion of a CX;CR1 blocking antibody but not control IgG elimi-
nated the microglia-mediated increase in neurosphere formation
frequency that is normally observed following running. Addi-
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Effect of age and voluntary exercise on CX,CL1/fractalkine levelsin the adult mouse hippocampus. A, Under sedentary
conditions, a significant decrease in the levels of soluble (i.e., cleaved) CX;CL1 was observed in 12- and 18-month-old mice
compared with their younger (2-month-old) counterparts (*p << 0.05; n = 4 per experimental condition). B, Voluntary wheel
running resulted ina small butsignificantincrease in hippocampal CX;CL11evelsin young mice (*p << 0.05;n = 6 perexperimental
condition). €, Exercise also increased hippocampal (X;CL1 levels in aged mice. Voluntary wheel running for a period of 28 d
significantly increased CX,CL1 levels in 12-month-old mice (*p << 0.05; n = 5 per experimental condition), restoring these to the
levels normally observed in young, nonrunner hippocampus (compare with A). R, Runner; NR, nonrunner.

A C
1501 15019
*
T 1
*
172}
2 100 £ 5
5] s
< 7]
5 :
Q
> . c
8 50 <
O-
] &
) Q
K
o‘*\
) CX3CL1 (100 ng/ml)
B D
1509 150+
[} (%]
3 & 1004
< <
Q o
7] 7]
<} e
2
< -
< < 50
0-
0 10 100 200 400 0 100

CX3CL1 (ng/mi)

CX3CL1 (ng/ml)

Figure 6.  Signaling through the (X;CL1-CX,CR1 axis mediates neural precursor activation. 4,
Intraparenchymal infusion of a (X;CR1 blocking antibody into the hippocampus abrogated the effect
of running on the frequency of neurosphere formation toa similar extent as microglia depletion (*p <
0.05; n = 3—4 per experimental condition). B, Addition of CX;CL1 to crude hippocampal cell prepa-
rations resulted in a dose-dependent increase in neurosphere numbers, with the optimal dose being
100 ng/ml (*p << 0.05;n = 3 per experimental condition). , Microglia are critical for mediating the
(X;CL1 effect as their depletion abolished the response. An approximate twofold reduction in the
neurosphere-forming frequency was observed in cultures from which microglia were depleted (*p <
0.05;n = 5 per experimental condition), despite the presence of 100 ng/ml CX;CL1. D, No benefits of
(X,CL1 addition on neural precursor activity were ohserved in hippocampal neurosphere preparations
from C,cr19P9% mice, indicating that the effect was specifically mediated via (X,CR1.

tional in vitro experiments supported the view that signaling
through the CX;CL1-CX;CR1 axis critically contributes to mod-
ifying the microglia phenotype toward one that increases NPC
activity in support of neurogenesis.
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tion); MG, microglia; w/o MG, without microglia.

Role of microglia in neural precursor activation
There is now a substantial body of evidence to suggest that NPC
activity and neurogenesis within the adult hippocampus are in-
fluenced by a wide variety of physiological factors, including ex-
ercise, aging, depression, or inflammation (for review, see
Vukovic et al., 2011). It has been speculated that altered immune
and/or microglial activation status in some of the aforemen-
tioned parameters may influence NPC activity. However, direct
evidence in support of this has been limited. The extent to which
microglia can influence hippocampal neurogenesis has largely
remained ambiguous due to the lack of an appropriate model
system. PU1~’~ mice, which do not have the monocytic cell lin-
eage and thus lack microglia (McKercher et al., 1996; Henkel et
al., 1999; Dakic et al., 2005), would appear to be the most likely
candidates for assessment of the influence of microglia; however,
these animals are embryonically lethal (18 d postcoitum) and
were therefore unsuitable for our study. Previous in vivo studies
attempting to elucidate the role of microglia and their activation
status in adult neurogenesis have been mostly correlative, exam-
ining, for example, microglia numbers under various experimen-
tal conditions but not directly demonstrating a specific role for
these cells in the regulation of NPC activity and neurogenesis
(Ekdahl et al., 2003; Monje et al., 2003; Ziv et al., 2006; Olah et al.,
2009). Additional in vitro studies have yielded generalized in-
sights regarding how microglia could differentially influence
adult neurogenesis (Walton et al., 2006; Deierborg et al., 2010),
with Walton et al. (2006) being the first to suggest that a soluble
factor found in the microglia-conditioned medium could rescue
the ability of extensively passaged SVZ neural precursors to dif-
ferentiate into immature neurons. Other studies have assessed
neurogenesis in response to artificial stimulation with lipopoly-
saccharide or cytokines (Aarum et al., 2003; Deierborg et al., 2010).
However, most of these investigations used neocortical microglia
preparations derived from newborn pups and maintained in culture
for extended periods of time. As microglial phenotypes appear to
differ across brain regions and ages (Lawson et al., 1990; Ren et al.,
1999; Kim et al., 2000; Butovsky et al., 2006; Njie et al., 2012), any
conclusions drawn from these studies would be difficult to extrapo-
late to adult hippocampal neurogenesis.

Our approach, using CsfIr-GFP transgenic mice in combina-
tion with FACS, offered us the unique advantage of being able to

# of neurospheres

Microglia in the aged hippocampus negatively control neural precursor cell activity. A, The frequency of neurosphere
formation, which is a direct reflection of NPC activity, significantly declines with age between 2 and 9 months of age (*p << 0.05;
n = 3 perexperimental condition). B, Depletion of microglia from the hippocampi of young (2-month-old) sedentary mice did not
affect the neurosphere frequency. Note, however, that microglia depletion at more advanced ages significantly increased neuro-
sphere numbers (*p << 0.05; n = 3 per experimental condition). ¢, Addition of microglia from aged hippocampus to microglia-
depleted hippocampal cell cultures of young mice did not significantly impact on the neurosphere frequency compared with
control cultures in which hippocampal microglia from 2-month-old mice were added (p > 0.05; n = 6 per experimental condi-
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assess the role of hippocampal microglia
in adult neurogenesis under more phys-
iological conditions that are known to
influence NPC activity in situ. Through
depletion of microglia from runner hip-
pocampi or their addition to neurosphere
preparations from sedentary mice, we
have been able to provide the first direct
evidence that the positive effect of volun-
tary exercise on NPC activity within the
hippocampus is dependent on microglia.
In line with the prevailing scientific view
that microglia are more proinflammatory
in the aging brain, and to some degree
dysfunctional (Conde and Streit, 2006;
Njie et al., 2012), we were able to demon-
strate that removal of microglia from
preparations of 9- and 20-month-old mice
increased the neurosphere formation fre-
quency. Thus, hippocampal microglia di-
rectly and differentially influence NPC
activity in situ in two physiological para-
digms: exercise and aging.

Dual and seemingly opposing roles of microglia in adult neu-
rogenesis have been reported in previous studies. For instance,
the decline in NPC activity within the aging hippocampus occurs
in parallel with an increase in the overall density of microglia and
signs of activation (Ogura et al., 1994; Mouton et al., 2002; San-
dhir etal., 2008). Conversely, increases in the number of presum-
ably beneficial microglia within the dentate gyrus, as a result of
exposure to enriched environments or physical activity, have
been correlated with elevated hippocampal neurogenesis (Ziv et
al., 2006; Choi et al., 2008), although this observation has been
disputed (Long et al., 1998). Others have reported an increase
in the relatively small proportion of proliferating microglia
following running (Ehninger and Kempermann, 2003; Steiner
et al., 2004; Choi et al., 2008; Olah et al., 2009). Our own
observations align with those reports that showed no signifi-
cant change in the overall microglial density but an increase in
proliferating microglia.

There was a change, however, in the proportion of MHCIIP**
microglia, the number of which decreased following running in
our study, whereas others have reported no change (Olah et al.,
2009). Intriguingly, we were able to show that depletion of this
relatively small subpopulation of microglia resulted in a modest
but significant increase in the frequency of neurosphere forma-
tion in runner mice. This novel finding suggests that MHCII?**
microglia, which have mostly been studied under inflammatory
conditions, control running-induced neurogenesis in a negative
rather than positive fashion, as was previously suggested by Ziv et
al. (2006). Such a regulatory role for MHCII?*® microglia is also
in line with a cytokine profile that is known to inhibit neurogen-
esis (Henry et al., 2009). As the microglia of older mice typically
show increased MHCII expression, it remains to be elucidated
whether the inhibitory effects of microglia from the aged brain
can be neutralized by depletion of MHCII?®® microglia.
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Microglia-mediated neural precursor activation is dependent
on CX;CL1 signaling

As previous studies have indicated a key role for CX;CRI in reg-
ulating microglial activation status (Mizuno etal., 2003; Cardona
et al., 2006), we assessed whether signaling through this chemo-
kine receptor could be responsible for the influence of microglia
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on NPC activity. The chemokine CX;CL1, which is the CX;CR1
ligand, is highly expressed in CNS neurons (Harrison et al.,
1998), including mature neurons of the dentate gyrus (Kim et al.,
2011), and is normally produced in a membrane-bound form
from which the chemokine domain can be released through pro-
teolytic cleavage (Bazan et al., 1997). The CX;CL1-CX;CR1 axis
therefore represents a pathway for direct communication be-
tween neural cells and microglia. CX;CR1 deficiency deregulates
microglia function and reportedly results in excessive release of
proinflammatory factors in various models of neurological dis-
ease (Mizuno et al., 2003; Cardona et al., 2006). Recent studies
have revealed that CX;CL1 levels are reduced in the aged rat
hippocampus (Wynne et al., 2010; Bachstetter et al., 2011), which
correlates with the naturally occurring decline in neurogenesis.
In the present study, these findings have also been shown to be
true in the mouse hippocampus. In addition, we have demon-
strated that CX;CR1 deficiency results in decreased levels of basal
neurogenesis in both young and aged mice.

Until now, the question remained as to whether the impact of
CX;CRI1 deficiency on adult neurogenesis was indeed specifically
mediated via microglia. In direct support of a putative role for
CX,CLI in regulating NPC activity, we found that voluntary run-
ning increased soluble CX;CL1 within the hippocampus of both
young and aged mice. Although it cannot be excluded that some
membrane-bound CX3CL1 protein was included in the total
amount of soluble CX3CL1 obtained during tissue preparation,
all samples were processed simultaneously and in a similar fash-
ion. Thus, the main conclusions we have drawn regarding control
versus test conditions remain valid. Importantly, exercise effec-
tively countered the naturally occurring age-related decline in
CX;CL1 levels within the hippocampus of aged mice, restoring
them to those seen in young animals. These findings are sup-
ported by a recent study by Barrientos et al. (2011), who sug-
gested a potential beneficial link between running and altered
neuroinflammatory responses. In our study, direct evidence for a
role of CX;CL1 in regulating NPC activity was demonstrated via
intraparenchymal infusion of a CX;CR1 blocking antibody into
the hippocampus, which largely abolished the positive effect that
microglia normally exert on these cells during running. Further-
more, addition of CX;CL1 to neurosphere preparations from
sedentary wild-type but not CX;CR1-deficient mice resulted in a
dose-dependent increase in the neurosphere-forming frequency.
Thus, through the use of knock-out mice, blocking antibodies,
and depletion studies, we have demonstrated that exercise-
induced precursor activation is indeed mediated via signaling
through CX;CR1, which is present on the microglial surface.

In summary, we have demonstrated a direct association
between the beneficial effects of exercise in relation to NPC acti-
vation and increased levels of soluble CX;CL1 within the hip-
pocampus, which in turn appears to modulate microglia
activation status. Manipulation of the CX;CL1-CX;CR1 axis
therefore provides a putative therapeutic avenue to counter the
decline in NPC activity and neurogenesis within the aging brain.
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