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Abbreviations 

 

amyotrophic lateral sclerosis ALS 

ephrin type-A receptor EphA 

ephrin type-B receptor EphB 

Cu/Zn superoxide dismutase1 SOD1 

wild-type  WT 

knockout KO 

full-length EphA4 EphA4-FL 

postnatal day  P 

human embryonic kidney HEK-293T 

Roswell Park Memorial Institute  RPMI 

foetal bovine serum  FBS 

Chinese hamster ovary CHO 

radio immunoprecipitation assay RIPA 

bicinchoninic acid BCA 

phosphate-buffered saline  PBS 

phosphate-buffered saline and 0.02% Tween 20 PBST 

wheat germ agglutinin  WGA 

4’,6-diamidino-2-phenylindole  DAPI 

reverse transcription polymerase chain reaction  RT-PCR 

quantitative reverse transcriptase-polymerase chain reaction qRT-PCR 

expressed sequence tag sequences  ESTs 

transmembrane TM 

nonsense-mediated decay  NMD 
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Abstract - Amyotrophic lateral sclerosis (ALS) is characterised by the degeneration 

of motor neurons, leading to progressive muscle atrophy and fatal paralysis. 

Mutations in more than 20 genes, including full-length EphA4 (EphA4-FL), have 

been implicated in this pathogenesis. The present study aimed to identify novel 

isoforms of EphA4-FL and to investigate the expression of EphA4-FL and its 

isoforms in the superoxide dismutase 1 (SOD1) mutant mouse model of ALS. Two 

novel transcripts were verified in mouse and humans. In transfected cells, both 

transcripts could be translated into proteins, which respectively contained the N- and 

C-termini of EphA4-FL, referred as EphA4-N and EphA4-C. EphA4-N, which was 

expressed on the surface of transfected cells, was shown to act as a dominant 

negative receptor by significantly suppressing the activation of EphA4-FL in vitro. The 

expression of both EphA4-FL and EphA4-N was significantly higher in the nervous 

tissue of SOD1
G93A

 compared to wild-type mice suggesting that both forms are 

modulated during the disease process.  
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INTRODUCTION 

The Eph receptor family, one of the largest families of receptor tyrosine kinases, 

includes 16 members in vertebrates. It is composed of ephrin type-A receptor (EphA) 

and ephrin type-B receptor (EphB) subgroups categorised on the basis of 

extracellular region sequence similarity and affinity for binding ephrins (ligands). 

Members of the EphA subgroup, of which there are 10, bind the five GPI-anchored 

ephrin A ligands, whereas the six EphB molecules bind the three transmembrane 

ephrin B ligands (Flanagan and Vanderhaeghen, 1998). EphA4 is distinguished by its 

ability to bind with both ephrinA and ephrinB ligands (Bowden et al., 2009). Its 

structure is highly conserved between species; for example, human and mouse 

EphA4 share about 98.58% amino acid sequence identity (Nelersa et al., 2012). 

EphA4 has been shown to play a vital role in promoting axonal regeneration, 

neurogenesis, synaptogenesis and angiogenesis during developmental and adult 

stages (Dottori et al., 1998; Cheng et al., 2002; Kullander et al., 2003; Klein, 2004; 

Ho et al., 2009; Khodosevich et al., 2011). Most recently, EphA4 has also been 

implicated in amyotrophic lateral sclerosis (ALS) in animal models and in humans 

(Van Hoecke et al., 2012). 
   ALS is an adult-onset, neuromuscular disease that is characterised by the 

degeneration of both the upper and the lower motor neurons, leading to progressive 

muscle atrophy and fatal paralysis. In approximately 90% of people with ALS, the 

disease is sporadic, while in the remainder, it is familial. ALS is a multi-factorial 

disease, with more than 20 genes implicated in its pathogenesis, such as the Cu/Zn 

superoxide dismutase1 (SOD1) gene (Rosen et al., 1993), TARDBP (Sreedharan et 

al., 2008) and chromosome 9 open reading frame 72 (C9orf72) (DeJesus-

Hernandez et al., 2011; Renton et al., 2011). Van Hoecke and colleagues (Van 

Hoecke et al., 2012) first reported that the EphA4 gene has a role in ALS, 

demonstrating that lower levels of expression of EphA4 mRNA in total blood samples 

correlated with later disease onset and prolonged disease progression in ALS 

patients. They also demonstrated that reducing the level of EphA4 in SOD1
G93A

 mice 

significantly improved motor performance and survival, and that administration of a 

pharmacological blocker of EphA4 to SOD1
G93A

 rats delayed disease onset. This 

study elegantly revealed that, although variations in EphA4 do not directly cause ALS, 

altering its level of expression or activation could affect disease progression, making 
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it an attractive target for ALS therapies.  

   There is increasing evidence that alternative transcripts are involved in genetic 

diseases, including some neurological diseases, such as schizophrenia and ALS 

(Gagliardi et al., 2012; Feng and Xie, 2013). In ALS, in particular, it has been shown 

that alteration of the RNA profile occurs from transcription, through to post-

transcriptional regulation, and finally to protein non-coding RNA. In the case of 

EphA4, little is known about its post-transcriptional modification, which is a common 

and principal process resulting in alternative transcripts. However, EphA7, another 

EphA receptor similar to EphA4, has alternative transcripts in both mouse and 

human, and the truncated proteins produced from these alternative transcripts affect 

the function of full-length EphA7. In mouse, expression of a transmembrane protein 

lacking the kinase domain results in a switch from cellular repulsion to adhesion 

(Holmberg et al., 2000). In man, the soluble isoform of EphA7 acts as an inhibitor of 

kinase function by heterodimerising with full-length, membrane-bound Eph receptors 

(Oricchio et al., 2011). Therefore, the aims of the present study were two fold: 1) to 

identify novel alternative transcripts of EphA4 and 2) to investigate the expression of 

EphA4 and its novel transcripts in the SOD1
G93A

 mouse model of ALS.  

 

EXPERIMENTAL PROCEDURES 

Animals 

   Adult C57BL/6J mice were used as wild-type (WT) controls. EphA4 knockout (KO) 

mice were used to determine the existence of novel isoforms and have been 

described previously (Dottori et al., 1998). The SOD1
G93A

 mouse model of ALS was 

used to investigate the involvement of full-length EphA4 (EphA4-FL) and its 

alternative transcripts in ALS (Gurney et al., 1994). Based on the pathogenesis in 

SOD1
G93A

 mice (Vinsant et al., 2013), the presymptomatic stage was defined as 

postnatal day (P) 35. SOD1
G93A

 mice were immediately euthanised if they showed 

any of the following signs (also defined as the survival end-point): loss of the righting 

reflex (unable to right within 30 seconds of being placed on their back), excessive 

weight loss (greater than 20% of the highest body weight), or complete paralysis of 

any hind-limb that rendered the animal incapable of reaching food and water (Weydt 

et al., 2003). The end-point of life is usually around P150. These mice were sourced 

from the Jackson Laboratory. 
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   The total number of mice used was 42. All animals were housed in groups of 4 or 5 

and experiments were conducted in accordance with the Australian Code of Practice 

for the Care and Use of Animals for Scientific Purposes, with ethical approval from 

the University of Queensland Animal Ethics Committee. 

 

Reverse transcriptase PCR  

   A reverse transcription polymerase chain reaction (RT-PCR) was used to verify the 

existence of novel alternative transcripts of EphA4-FL in mouse and human tissue 

samples. RNA samples from the left hemisphere and whole spinal cord of mice were 

extracted using TRIzol Reagent (Invitrogen) (WT, n = 3; SOD1
G93A

, n = 3). DNA was 

removed using the DNA-free Kit (Life Technologies). The quality of samples was 

assessed using 2100 Bioanalyzer Nano Chips (Agilent Technologies), and the 

quantity estimated using a Qubit RNA BR Assay Kit (Life Technologies). One 

microgram of RNA was then reverse transcribed to cDNA using SuperScript III, as 

per the manufacturer’s protocol (Invitrogen). Healthy human cDNA panel were 

bought from Invitrogen. All primers are listed in Table 1.  

 

Cloning of EphA4-N and EphA4-C 

   Based on the sequences of alternative transcripts, the possible protein isoforms 

were predicted to contain either the N- or C-terminal region of the EphA4-FL protein. 

We therefore referred to them as EphA4-N and EphA4-C. To determine if EphA4-N 

and EphA4-C produced mature protein, their open reading frames (ORFs) were 

cloned into the pCMV-Tag 1 vector and transiently transfected into human embryonic 

kidney (HEK) 293T cells using the FuGENE
®
 6 transfection reagent (Promega). 

Transfected HEK-293T cells were grown in humidified 5% CO
2
 at 37°C in Roswell 

Park Memorial Institute (RPMI) 1640 medium (Gibco, Life Technologies) 

supplemented with 10% foetal bovine serum (FBS; Gibco, Life Technologies). Cells 

were collected 48 hours after the transfection for western blot analysis.  

   To illustrate the cellular localisation of EphA4-N and its effect of the EphA4-FL 

activation, the ORF of EphA4-N was cloned into the pmCherry-N1 vector and fused 

in frame with a mCherry fluorescent reporter. Using the same transfecting method as 

described above, these DNA plasmids were transfected into Chinese hamster ovary 

(CHO) cells that were already stably transfected with mouse EphA4-FL (nucleotides 
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55-3024; NM_007936.3) (referred to as CHO-FL cells) (Spanevello et al., 2013). 

These transfected CHO-FL cells were collected 48 h later and then these transfected 

CHO-FL cells went through sorting procedure to isolate those cells expressing a high 

level of mCherry using flow cytometry, as well as the mCherry-positive gate was set 

relative to the basal fluorescence levels obtained from non-transfected CHO-FL cells, 

which have been consistent throughout the whole project (BD influx sorter; BD 

Bioscience). These mCherry-positive CHO-FL cells were cultured for another 7-14 

days, and then went through the same sorting procedure again. After around 5 

arounds of sorting process, the percentage of mCherry-positive events was more 

than 90% of entire cell population, which indicates transfected cells stably and highly 

expressed EphA4-N. Since that, another 3 rounds of sorting selection were used to 

establish the stably co-transfected EphA4-N and EphA4-FL CHO cell lines (referred 

to as CHO-FL+N cells). CHO-FL+N cells regularly went through the same sorting 

selection to ensure that the percentage of mCherry-positive events was more than 

90% of total events. 

 

Western blot analysis and activation assay  

   To determine the protein isoforms, HEK-293T cells expressing either EphA4-N or 

EphA4-C were collected 48 hours after transient transfection, and then lysed in 

modified radio-immunoprecipitation assay (RIPA) buffer (150 mM sodium chloride, 1% 

NP-40, 0.25% sodium deoxycholate, 1 mM sodium orthovanadate, 1 mM ethylene 

diamine tetraacetic acid, 1 mM sodium fluoride, 50 mM Tris, pH 7.4) and Complete 

Protease Inhibitor Cocktail (1×; Roche Applied Science). Lysates were incubated on 

ice for 15 minutes, after which they were centrifuged at 14,000 x g for 10 minutes at 

4°C. The total protein concentration was determined using a bicinchoninic acid (BCA) 

assay (Pierce Biotechnology, Thermo Scientific). Reduced protein (20 µg) was 

separated by electrophoresis (4-12% SDS-PAGE, Novex NuPAGE, Invitrogen), and 

subsequently transferred onto Immobilon-P FL membranes (PVDF, 0.45 µm, Merck m, Merck 

Millipore). Membranes were blocked with 5% skim milk powder dissolved in 

phosphate-buffered saline (PBS) and 0.02% Tween 20 (PBST) for 1 hour. Primary 

antibodies (mouse anti-N-terminal-EphA4, ECM Bioscience; rabbit anti-C-terminal-

EphA4, Santa Cruz Biotechnology) were incubated with membranes overnight in 5% 

skim milk powder in PBST at 4°C. The N-terminal antibody targets the extracellular 
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part of EphA4-FL, downstream of the ligand-binding domain, and the C-terminal 

antibody targets a part of the tyrosine kinase domain and a part of the SAM domain 

(Figure 3A). The N-terminal antibody can detect EphA4-FL and EphA4-N, whereas 

the C-terminal antibody can detect EphA4-FL and EphA4-C. After washing with 

PBST, bound antibodies were separately detected by IRDye 680RD anti-mouse or 

IRDye 800CW anti-rabbit secondary reagents (LI-COR Biosciences). The 

hybridisation signal was detected using the Odyssey system (LI-COR Biosciences) 

(n = 4 replicates).    

   The brains and spinal cords from SOD1
G93A

 mice (n = 4), EphA4 KO mice (n = 4) 

and age-matched WT controls (n = 8) were homogenised in 1 ml of RIPA buffer. 

Tissue lysates were incubated on ice for 2 hours. Supernatants were collected after 

centrifugation at 14,000 x g for 30 minutes at 4°C. The BCA and western blot assays 

were performed as described above, except that 100 µg of protein was used in the 

western blot analysis. 

   To determine the effect of EphA4-N on the activation of EphA4-FL, the 

phosphorylation levels of EphA4-FL activated by ephrinA4 or ephrinA5 ligands were 

compared between the CHO-FL and CHO-FL+N cell lines. Both cell lines were 

grown in RPMI 1640 medium supplemented with 10% FBS in humidified 5% CO
2
 at 

37°C. For EphA4-FL activation assays (n=6 experiments), cell cultures of the CHO-

FL and CHO-FL+N cell lines, at 80–90% confluence, were serum starved overnight. 

Either ephrin A4-Fc or ephrin A5-Fc was added at 1 µg/ml and 10 µg/ml. Ephrin A4-

Fc is a fusion protein of the extracellular domain of human ephrin A4 (amino acids 1-

166 of NP_005218.1) to the human Fc domain of IgG1 (amino acids 99-330 of 

P01857.1). Similarly, ephrin A5-Fc comprises human ephrin A5 (amino acids 1-201; 

NP_001953.1) and the same Fc region. Both ligands were produced and purified as 

reported previously (Day et al., 2006; Goldshmit et al., 2011). After 30 minutes, cells 

were collected and lysed in RIPA buffer. Preparation of cell lysates, and BCA and 

western blot assays were conducted using the same protocol as described above. 

Rabbit anti-phospho Tyr-602-EphA4 (ECM Bioscience) was used as the primary 

antibody to assess EphA4-FL phosphorylation. Absolute integrated intensity values 

of bands were extracted and adjusted for background values using Odyssey software; 

moreover, the intensities of the EphA4-FL and EphA4-N were normalised to the 

internal control ( β -tubulin) to account for any loading error. The intensity of 
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phosphorylated EphA4-FL was then normalised to the total EphA4-FL levels. 

Changes were expressed as fold changes of the mean value of the untreated group 

(n = 6 replicates). 

 

Immunostaining and confocal microscopy 

   To examine the subcellular localisation of EphA4-N in vitro, CHO-FL+N cells were 

plated on coverslips in 24-well plates that had been coated with poly-L-lysine. When 

the confluency reached 70%, the cells were fixed with 4% paraformaldehyde in PBS 

for 15 minutes at room temperature. They were then incubated with Alexa Fluor 647-

conjugated wheat germ agglutinin (WGA) (1:1000 dilution, Invitrogen) for 10 minutes 

at room temperature to label the plasma membranes. After washing three time with 

PBS, all cells were incubated with 4’,6-diamidino-2-phenylindole (DAPI; 1:5000 

dilution, Invitrogen) for 10 minutes. Samples were mounted onto glass slides using 

Dako fluorescent mounting medium. Localisation was determined using a Zeiss LSM 

710 confocal microscope with a 63× oil-immersion objective. 

 

Quantitative RT-PCR 

   A quantitative RT-PCR (qRT-PCR) reaction was used to evaluate changes in the 

RNA expression of EphA4-FL and EphA4-N in the whole left brain and spinal from 

SOD1
G93A

 mice (n = 10), and age-matched WT controls (n = 10). Five SOD1
G93A

 mice 

and five WT controls were in presymptomatic stage and the rest mice were at end-

point of life. All RNA samples went through the processes described above to 

produce cDNA samples. The PCR products were produced using SYBR Green I 

Master, and were detected in the LightCycler 480 Real-Time PCR System (Roche). 

The expression levels of EphA4-FL and EphA4-N were standardised to the 

housekeeping gene Pgk1 in individual samples, after which they were analysed 

using relative quantification analysis. For qRT-PCR, technical triplicates were used to 

account for pipetting errors. All primers are listed in Table 2.  

 

Statistical analysis 

   Results are expressed as mean ± standard error of the mean (SEM). A single data 

point was collected from each animal or each biological replicate. Data sets assumed 

a normal distribution of gene expression levels with the equal variance between 
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groups and were tested for significant difference using standard tests incorporated in 

GraphPad Prism v6.0. The statistical analysis of the effect of EphA4-N on the 

activation of EphA4-FL were conducted with Student’s t tests. For RNA expression of 

EphA4-FL and EphA4-N in SOD1
G93A

 mice and age-matched WT controls at two time 

points, differences between groups were tested for statistical significance using two-

way ANOVAs, followed by a post hoc Sidak’s test. A p value <0.05 was considered to 

be statistically significant. 

 

RESULTS 

Identification and validation of the alternative transcripts, EphA4-N and EphA4-

C, in mice and humans 

   To investigate alternative transcripts of EphA4-FL, all expressed sequence tag 

sequences (ESTs) from the GenBank database were aligned with the reference 

mRNA sequences of EphA4 of human and mouse (Genbank accession numbers 

NM_004438 and NM_007936, respectively). In contigs, ESTs that did not align 

perfectly with the reference sequence were considered to be potential alternative 

transcripts of EphA4-FL. Using this classical method, several potential alternative 

transcripts were identified. Two of them were chosen for further investigation as no 

frameshift was detected in these two alternative transcripts. 

   The sequence of EphA4-N (EST, AK132203) suggested an mRNA encompassing 

the first eight exons and continued transcribing from exon 8 into intron 8, resulting in 

a premature stop codon (Figure 1A). The first set of primers was used to amplify a 

fragment starting in exon 7 through to the newly identified sequence in intron 8. As 

this PCR fragment would not be amplified from the EphA4-FL transcript, it suggested 

the existence of EphA4-N. We successfully amplified the expected PCR fragments 

from cDNA samples of brain and spinal cord from SOD1
G93A

 (n = 3) and WT mice (n = 

3), as well as from cDNA samples of human foetal and adult brain, cerebellum, 

spinal cord, motor cortex, hippocampus and temporal lobe, and from blood samples 

from a healthy control and an ALS patient (Figure 1 B, C).  

   The sequence of EphA4-C (EST, W53668) indicated an mRNA using a novel 5’ 

UTR located in intron 11 that reads through to the normal 3’ end of the EphA4-FL 

transcript and contains a normal 3’UTR (Figure 1A). A set of primers was designed 

to amplify a fragment containing the 3’ end of intron 11 and the 5’ end of exon 15, 
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which would not be amplified from the EphA4-FL transcript. The expected fragments 

were successfully obtained from the same cDNA samples from SOD1
G93A

 and WT 

mice that were used to detect EphA4-N. They were also found in same tissue 

samples from humans (Figure 1 B, C). These PCR products were verified using 

Sanger Sequencing (data not shown). Together, these observations suggest that 

alternative transcripts of EphA4-FL, EphA4-N and EphA4-C are present in both mice 

and humans. 

 

Protein expression of EphA4-N and EphA4-C in vitro and in vivo  

   After verification of the presence of the EphA4-N and EphA4-C transcripts in 

mouse and human, it was important to determine whether these novel transcripts 

were translated into proteins. Based on the sequences of EphA4-N and EphA4-C, 

the amino acid sequences, domain structures and molecular weights of protein 

isoforms produced from them were predicted. As shown in the Figure 2, the EphA4-

FL transcript contains 18 exons and its start codon and stop codon exist in exon 1 

and exon 17, respectively. The EphA4-FL protein is reported to anchor to the cell 

surface by a transmembrane (TM) domain. The extracellular part of EphA4-FL is 

composed of an ephrin ligand-binding domain, a cysteine-rich domain, and FN1 and 

FN2, whereas the intracellular part consists of a tyrosine kinase domain and a SAM 

domain. The EphA4-N transcript comprises the first eight exons with read-through in 

intron 8 leading to a new stop codon. A predicted protein isoform translated from 

EphA4-N is a truncated protein with the same N-terminus and TM domain as that of 

the EphA4-FL protein, but without the intracellular region. The transcript of EphA4-C 

initiates in intron 11 and reads through to the normal 3’ end of the EphA4 gene, 

generating a protein whose start codon is in exon 12, with the rest of the ORF being 

the same as that of EphA4-FL. The predicted protein of EphA4-C encodes the end 

portion of the tyrosine kinase and SAM domains, but lacks the N-terminal part of 

EphA4-FL. 

   Using an N-terminal antibody, in both EphA4-N-transfected and non-transfected 

HEK-293T cell lysates, EphA4-FL protein (~120 kDa) was detected, indicating the 

presence of endogenous expression. A band of ~63 kDa was detected only in the 

transfected cell lysates. The size of this band was consistent with that of the 

predicted EphA4-N protein. It is therefore likely that this band represents the novel 
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protein isoform, EphA4-N (n = 4 replicates). The EphA4-FL protein and a similar 

band (~63 kDa) were also detected in the brain and spinal cord tissue from WT mice. 

As expected, these bands were absent from all EphA4 KO mice tissues, because 

any EphA4 protein containing the ligand-binding domain, including the full-length 

protein and its isoforms, should not be expressed in these mice (Figure 3B). 

   A similar analysis, using a C-terminal antibody, was carried out to identify the novel 

protein isoform corresponding to EphA4-C. As shown in Figure 3C, EphA4-FL protein 

was detected in both EphA4-C-transfected and non-transfected HEK-293T cell lines, 

but an obvious band (~33 kDa) was only detected in cell lysates that transiently 

expressed EphA4-C, and not in the control cells. The size of this band was consistent 

with the predicted molecular weight of EphA4-C. In mouse samples, EphA4-FL was 

recognised in tissues from WT but not EphA4 KO brain and spinal cord, which is the 

same pattern as that detected by the N-terminal antibody. In the present study, 

EphA4-C was not observed in any tissue from transgenic or WT mice.  

   Western blot analysis was also performed on tissues from different transgenic 

mouse models. Bands representing EphA4-FL were detected in brain cell lysates 

collected from WT, SOD1
G93A

 and EphA4 WT mice by both N- and C-terminal 

antibodies, but not in EphA4 KO mice (Figure 3D, E). The ~63 kDa band was 

identified in the brain tissue from WT, SOD1
G93A

 and EphA4 WT mice, but there were 

no bands present in the region from 30 kDa to 40 kDa. It is therefore likely that both 

EphA4-N and EphA4-C proteins could be translated from the alternative transcripts 

of EphA4-FL in the transfected cells. EphA4-N was also found to exist in the brain 

and spinal cord of WT and transgenic mice; however, EphA4-C was not found in any 

mouse tissues, suggesting either that it is not expressed or that it is degraded. 

Therefore, we focused on a functional investigation of EphA4-N in the remainder of 

our study. 

 

Subcellular localisation of EphA4-N  

   As a glycosylated transmembrane protein, EphA4-FL has a TM domain, resulting 

in its localisation to the plasma membrane; it is also found intracellularly, in the 

endoplasmic reticulum and Golgi apparatus, as well as on vesicles (Tremblay et al., 

2009). Given the structure of the full-length protein, EphA4-N is likely to localise on 

the cell membrane as it contains the same TM domain. The ORF encoding EphA4-N 
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was cloned into expression vectors and fused in frame with a mCherry fluorescent 

reporter. Subsequently, the EphA4-N expression construct was transfected into CHO 

cells that were stably expressing EphA4-FL (Spanevello et al., 2013). By the sorting 

procedure, CHO-FL cells highly expressing mCherry were selected and cultured, 

eventually to establish the stable CHO-FL+N cell line. In this cell line, the final 

percentage of mCherry-positive events (CHO-FL+N) was more than 90% of the 

entire events. We next stained the plasma and nuclear membranes of CHO-FL+N 

with WGA (Figure 4A) and their nuclei with DAPI (Figure 4B) to investigate the 

cellular localisation of EphA4-N that was labelled by mCherry reporter (Figure 4C). 

As expected, EphA4-N, in red, was expressed on the membrane surface of CHO-

FL+N cells (Figure 4D, n = 4 replicates). 

 

Effects of EphA4-N on ephrin-induced activation of EphA4-FL 

   A similar C-terminal truncated isoform has been reported for EphA7, and this 

EphA7 isoform suppresses tyrosine phosphorylation of full-length EphA7, resulting in 

a cellular shift from repulsion to adhesion (Holmberg et al., 2000). Moreover, the 

EphA4-FL agonist, EphA4-Fc, contains the same extracellular domain as EphA4-N, 

which has been reported to inhibit the activation of EphA4-FL, resulting in an 

enhancement in recovery and axonal regeneration following spinal cord injury 

(Spanevello et al., 2013). To determine whether EphA4-N could also inhibit the 

activation of EphA4-FL, the phosphorylation levels of EphA4-FL activated by different 

ephrin ligands were compared between CHO-FL and CHO-FL+N cell lines. The 

phospho-specific antibody detects the tyrosine phosphorylation of EphA4 at residue 

602 (P-Tyr EphA4-FL), which reflects the autophosphorylation status of Tyr-596 and 

Tyr-602 caused by EphA4-FL activation (Figure 5A). When EphA4-FL receptors were 

activated with either 1 or 10 µg/ml ephrin A4-Fc, the phosphorylation of EphA4-FL 

was increased 6-7-fold in the CHO-FL group compared to the untreated group 

(Figure 5B). However, co-expression of EphA4-N in CHO-FL cells (CHO-FL+N) 

resulted in a significant reduction in ephrin A4-dependent phosphorylation of EphA4-

FL at 1 µg/ml or 10 µg/ml, compared to that in the CHO-FL group (n = 6 replicates, 

Student’s t tests; [1 µg/ml ephrin A4-Fc] CHO-FL = 5.66 ± 0.299, CHO-FL+N = 2.88 

± 0.39, df = 10, p = 0.0002; [10 µg/ml ephrin A4-Fc] CHO-FL = 6.86 ± 0.293, CHO-

FL+N = 3.06 ± 0.41, df = 10, p • 0.0001) (Figure 5B). Significant decreases were also  0.0001) (Figure 5B). Significant decreases were also 
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found in both the 1 µg/ml and 10 µg/ml ephrin A5-Fc treatment groups ([1 µg/ml 

ephrin A5-Fc] CHO-FL = 4.41 ± 0.37, CHO-FL+N = 2.32 ± 0.44, df = 10, p = 0.0046; 

[10 µg/ml ephrin A5-Fc] CHO-FL = 5.77 ± 0.34, CHO-FL+N = 3.52 ± 0.75, df = 10, p 

= 0.0212) (Figure 5C). Therefore, co-expression of EphA4-FL with EphA4-N can 

significantly inhibit ephrin A4- and ephrin A5-dependent P-Tyr EphA4 in vitro, 

indicating that EphA4-N is likely to be an endogenous inhibitor of EphA4-FL. 

  

RNA expression of EphA4-FL and EphA4-N in the SOD1
G93A

 mouse model  

   Van Hoecke and colleagues have reported that the level of expression of EphA4 

inversely correlates with the progression of ALS (Van Hoecke et al., 2012). However, 

in their study, the expression of EphA4 included both EphA4-FL and EphA4-N. As we 

had verified the existence of EphA4-N, we investigated whether and how EphA4-FL 

and EphA4-N individually changed at different stages during disease progression. 

The RNA expression levels of EphA4-FL and EphA4-N were therefore examined in 

the brain and spinal cord of SOD1
G93A

 mice in the presymptomatic stage (n = 5) and 

at the end-point of life (n = 5), compared to that in age-matched WT controls (P35 n 

= 5, P150 n = 5) (Figure 6). 

   The mRNA expression pattern of EphA4-FL was the same in both brain and spinal 

cord tissue. SOD1
G93A

 mice had a higher expression of EphA4-FL at the end stage of 

disease compared to the presymptomatic stage; however, a similar significant 

increase was also found in the WT controls, indicating that these increases were 

most likely associated with ageing, rather than the ALS disease process (two-way 

ANOVA, followed by post hoc Sidak’s test. [brain] time F(1, 8) = 88.13, p • 0.0001,  0.0001, 

genotype F(1, 8) = 11.11, p = 0.0103, WT p = 0.0001, SOD1
G93A

 p = 0.0008; [spinal 

cord] time F(1, 8) = 33.7, p = 0.0004, genotype F(1, 8) = 3.588, p = 0.0948, WT p = 

0.0016, SOD1
G93A

 p = 0.0353) (Figure 6A, B). Interestingly, in both brain and spinal 

cord, significant increases in the expression level of EphA4-FL were observed in 

SOD1
G93A

 mice in the presymptomatic stage, compared to WT ([brain] p = 0.0094; 

[spinal cord] p = 0.0494) (Figure 6A, B). In the brain, the expression level of EphA4-N 

was higher in SOD1
G93A

 mice, compared to WT controls, at both time points ([brain] 

time F(1, 8) = 0.1063, p = 0.7528, genotype F(1, 8) = 37.93, p = 0.0003, 

presymptomatic stage p = 0.0025, end point p = 0.0402) (Figure 6C). We also 

detected a similar increase in the expression of EphA4-N in the spinal cord at the 
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end stage, but this was not statistically significant (Figure 6D). 

 

DISCUSSION 

   In the current study, two novel isoforms of EphA4-FL, EphA4-N and EphA4-C, are 

described. These two alternative transcripts were initially discovered by comparing all 

ESTs from the GenBank database with the reference mRNA sequences of human 

and mouse EphA4. They were further validated by RT-PCR, transient transfection of 

expression constructs and western blotting. Both alternative transcripts were 

successfully translated into protein isoforms in transfected HEK-293T cell lines, 

transiently expressing either EphA4-N or EphA4-C. However, only EphA4-N was 

detected in brain and spinal cord tissues from WT, SOD1
G93A

 and EphA4 WT mice. It 

should be noted that the level of protein expression of EphA4-N in mouse brain and 

spinal cord tissues was much lower than that of EphA4-FL, suggesting that the 

majority of the protein translated from the EphA4 gene is EphA4-FL with only a 

minority is the EphA4-N isoform. Considering that a similar C-terminus truncated 

isoform of EphA7 is highly expressed in the mouse brain during specific 

developmental stages (Holmberg et al., 2000) and only in germinal centre B-

lymphocytes in humans (Oricchio et al., 2011), EphA4-N might be expressed more 

highly at specific locations or differentiation stages. 

   The first possible reason for the lack of detection of EphA4-C in mouse tissue 

samples is that the EphA4-C transcript lacks upstream elements that play a major 

role in initiating the protein translation process. In comparison, in the EphA4-C 

expression vector, the Kozak consensus sequence, one of the upstream elements, is 

incorporated, so that EphA4-C could be successfully translated into the protein 

isoform in EphA4-C-transfected cell lines. Furthermore, EphA4-C is possibly a target 

of nonsense-mediated decay (NMD), an efficient surveillance mechanism that is 

used to break down mutant or aberrantly spliced transcripts that could potentially 

lead to defective proteins (Huang and Wilkinson, 2012). The EphA4-C transcript 

starts in intron 11 and has 29.5% coverage, compared to 58.1% for EphA4-N. As 

alternative sequences with the start codon occurring downstream of the first exon or 

having a lower coverage of the reference gene are candidates for the NMD pathway 

(Lewis et al., 2003), it may be easier for EphA4-C than EphA4-N to enter the NMD 

pathway. In support of this, in the cell lysates obtained from transfected HEK-293T 



  

 16

cells, the protein band indicating EphA4-C was significantly lighter than that of 

EphA4-N, suggesting that EphA4-C is degraded at a higher rate. Another possible 

reason why EphA4-C was detected only in transfected cell lysates is because this 

cell line produces far more EphA4-C protein than normal cells. However, we cannot 

totally exclude the possibility that EphA4-C is produced at a low level in mouse 

tissues, which may not be detectable by western blots. Even though we focused on 

EphA4-N in this study, it is possible that EphA4-C is involved in the internalisation of 

the full-length receptor, similar to other N-terminal truncations (Middlemas et al., 

1991). The polypeptide-binding sites located in EphA4-C may also facilitate the 

assembly of higher-order receptor/ligand clusters, which are essential for the 

activation of many tyrosine kinase receptors, particularly the Eph receptor family (Xu 

et al., 2013). In this family, the clusters include not only Eph/ephrin heterodimers, but 

also Eph/Eph clusters and Eph/ephrin complexes. EphA4-C might regulate the 

activation of the receptor by the formation of clusters between the truncated and full-

length receptors (Middlemas et al., 1991). Finally, in recent work, Luberg and 

colleagues (Luberg et al., 2010) indicated that a N-terminal truncated isoform of TrkB 

could act as a signalling molecule, as it contains docking sites for downstream 

molecule-binding, which subsequently results in activation of the signalling cascade. 

Given that EphA4-C also contains phosphorylation residues, substrate-binding sites, 

a SAM domain and a PDZ-binding domain, it might facilitate ligand-independent 

phosphorylation and/or accentuate the downstream signalling cascades. These 

results suggest that if EphA4-C is a real protein isoform of EphA4-FL, the 

interactions between EphA4-C and EphA4-FL may be complex.  

   Our cDNA cloning and immunostaining results indicated that EphA4-N was mainly 

expressed on the cell surface of CHO-FL+N cells. EphA4-N and EphA4-FL share 

100% homology in their extracellular domains, including the TM domain. This 

explains why EphA4-N is also anchored in the cell membrane. A similar cytoplasmic 

localisation has been described for some C-terminus truncated isoforms of other 

transmembrane tyrosine kinase receptors, such as TrkB (Klein et al., 1990; Luberg et 

al., 2010) and TrkC (Valenzuela et al., 1993). Given that EphA4-N was not detected 

in any transfected cell supernatant by western blot analysis (data not shown), it is 

reasonable to conclude that this novel isoform is not a secreted receptor. 

   In our study, the function of EphA4-N was first characterised using in vitro 
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experiments. The results showed that both ephrin A4- and ephrin A5-dependent P-

Tyr EphA4 levels significantly decreased in the presence of EphA4-N, compared to 

the level in CHO-FL only cells, indicating that EphA4-N inhibits the ligand-dependent 

activation of EphA4-FL. This kind of isoform is usually referred to as a dominant-

negative receptor, primarily because it is able to bind to the corresponding ligands 

through their ligand-binding domain, but the missing intracellular kinase domain 

results in inhibition of autophosphorylation of the full-length receptor and subsequent 

signalling pathway (Valenzuela et al., 1993; Eide et al., 1996; McCarty and Feinstein, 

1998; Sommerfeld et al., 2000).  

   Notably, a similar C-terminus truncated isoform of EphA7 has been reported in 

mouse and human. Unlike EphA4-N, which is expressed in the cell membrane, the 

truncated EphA7 isoform can be shed from the cell surface and act as a soluble 

inhibitor in man. The soluble EphA7 protein can bind to both full-length EphA7 and 

EphA2, resulting in the formation of non-functional heterodimers that block EphA7 

and EphA2 activation (Holmberg et al., 2000; Oricchio et al., 2011). Therefore, it is 

possible that EphA4-N similarly inhibits the phosphorylation levels of EphA4-FL by 

heterodimerising with EphA4-FL, thereby preventing trans-phosphorylation and 

blocking kinase activation. 

   As EphA4 has been recently confirmed as a disease modifier of ALS, we also 

determined RNA expression levels of EphA4-FL and EphA4-N in the classical 

SOD1
G93A

 mouse model of ALS to address their involvement in this disease. Our 

results revealed a significant increase in the expression of EphA4-FL in 

presymptomatic SOD1
G93A

 mice compared to WT animals; however, no difference was 

observed at the end stage of disease. These results suggest that EphA4-FL may be 

more critical early in disease pathogenesis, and may serve as an early biochemical 

marker of ALS as well as an indicator of disease severity as suggested by Van 

Hoecke et al. (2012). In support of this, our preliminary studies in ALS patients show 

a higher level of EphA4 expression than that seen in healthy controls (unpublished 

data).  

   With regard to EphA4-N, we also found a higher expression level of EphA4-N in the 

brain both during the presymptomatic stage and at the end point of the disease in 

SOD1
G93A

 mice, compared to WT controls. As EphA4-N is generated from post-

transcriptional modification of EphA4-FL, this increase in EphA4-N expression might 
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result from the up-regulated expression of EphA4-FL. This result is unlikely to 

support the notion that EphA4-N has a beneficial effect in ALS by inhibiting EphA4-

FL. However, given that the overall level of EphA4-N protein was remarkably lower 

than that of EphA4-FL protein in the brain and spinal cord from mice (Figure 3B), it is 

possible that the competitive action of EphA4-N may not be sufficiently strong to 

produce such a protective effect. In support of this, the RNA expression of EphA4-N 

was also lower than that of EphA4-FL in the brain and spinal cord (Figure 6). 

However, the fact that the enhanced expression of EphA4-N in SOD1
G93A

 mice 

persisted towards the end of the disease, compared to the level observed in WT 

controls, whereas the level of EphA4-FL at the end stage was no longer different 

from that of controls, suggests that EphA4-N may ameliorate disease progression to 

some extent. Of course, the effectiveness of EphA4-N can only be tested if it is 

expressed at higher levels in situ. Together, the inhibitory effect of EphA4-N on the 

activation of EphA4-FL was confirmed in vitro; however, its involvement in the 

pathogenesis of ALS requires further investigation. Although a change in RNA 

expression of EphA4-N and EphA4 FL was observed in SOD1
G93A

 mice, there are no 

reports indicating that mutant SOD1 can regulate other RNAs or proteins, so it 

seems unlikely that EphA4 expression is directly regulated by mutant SOD1. 

   Van Hoecke and colleagues suggested that the RNA expression of EphA4 in ALS 

patients’ blood samples is inversely correlated with disease onset (Van Hoecke et al., 

2012). However, when they addressed the correlation between the expression level 

of EphA4 and disease onset, they applied the relative expression level of EphA4 in 

ALS patients rather than healthy controls. A comparison with healthy controls would 

have indicated if the level of EphA4 in ALS patients as a group was different from 

that in the healthy subjects. In their data, the correlation also appeared to be unduly 

influenced by two ALS patients who presented with a high relative expression level of 

EphA4 and early disease onset. Once these two patients are removed from the 

correlation, the remaining samples appear to be evenly distributed across the entire 

age range. Therefore, we believe that further investigation of RNA expression of 

EphA4-FL and EphA4-N in human ALS patients will be important to address their 

effects on the disease. 

 

CONCLUSIONS 
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   In summary, our findings reveal the existence of a novel isoform of EphA4-FL, 

EphA4-N, in both mouse and human, which is alternatively transcribed from the 

EphA4-FL gene and successfully translated into functional protein. Another 

alternative transcript, EphA4-C, was only identified at the transcriptional level. 

EphA4-N is able to function as an endogenous dominant-negative inhibitor, in terms 

of its repressive effect on EphA4-FL signalling. The expression patterns of EphA4-FL 

and EphA4-N in the ALS mouse model indicate that EphA4-FL is likely to be 

associated with early disease pathogenesis. However, the involvement of EphA4-N in 

ALS requires further investigation.  
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Figure Legends 

Figure 1. Both mouse and human samples display novel EphA4-N and EphA4-

C transcripts. (A) Schematics of the structures of EphA4-FL and two novel 

transcripts and the approximate locations of the primers used for validation. (B) In 

SOD1
G93A

 (n = 3) and WT mice (n = 3), the expected PCR products were amplified 

from both brain and spinal cord samples using sets of primers to amplify either 

EphA4-N or EphA4-C. (C) EphA4-N and EphA4-C were also validated in different 

human tissues, namely foetal brain and adult cerebellum, spinal cord, motor cortex, 

hippocampus and temporal lobe, as well as blood samples from both a healthy 

control and an ALS patient. Both the mPgk1 and hPgk1 gene was used as an 

internal control to guarantee the quality of each sample. 

 

Figure 2. Structures of EphA4-FL protein and predicted protein isoforms, 

EphA4-N and EphA4-C, produced from novel alternative transcripts. The upper 

panels of (A), (B), and (C) are the structures of EphA4-FL, EphA4-N, and EphA4-C 

transcripts, and the lower parts are the structures of predicted proteins.  

 (Red: ligand binding domain (LBD); green: cysteine-rich domain (CRD); yellow: 

fibronectin type III repeats (FN1/2); purple: transmembrane domain (TM); sky blue: 

tyrosine kinase domain; blue-green: SAM domain) 

 

Figure 3. Identification of the novel isoform of EphA4 protein in different 

mouse models and EphA4-N-expressing HEK-293T cells by western blot. (A) 

Protein domains of EphA4-FL, EphA4-N and EphA4-C, and locations of peptides 

(blue bar) used to generate the N-terminal or C-terminal antibodies. (B-E) 

Representative images showing protein expression of EphA4-FL and EphA4-N in 

mice tissues and cell lines. (n = 4 biological replicates) (B, C) The expression of 

EphA4-FL (~120 kDa), EphA4-N (~63 kDa) and EphA4-C (~33 kDa) in the brain and 

spinal cord tissue from EphA4 WT and KO mice, as well as those in the cell lysates 
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both transfected (T) and non-transfected (NT) HEK-293T cells. (D, E) The expression 

of EphA4-FL, EphA4-N and EphA4-C in the brain samples from WT, SOD1G93A 

transgenic mice (Tg), EphA4 KO mice, and EphA4 WT mice. The red boxes indicate 

the isoforms, EphA4-N and EphA4-C.  

 

Figure 4. Subcellular localisation of the EphA4-N isoform. CHO-FL+N cell line 

stably overexpresses EphA4-N. (A-C) In this cell line, the plasma and nuclear 

membranes were stained with WGA (green, A) and nuclei were counterstained with 

DAPI (blue, B). (C) EphA4-N is labelled by mCherry fluorencent reported, showed in 

red. (D) As shown in the merged image, the EphA4-N isoform mainly localised to the 

cell membrane and to the cytoplasm (yellow). scale bar = 10 µm.m. 

 

Figure 5. Inhibitory effect of EphA4-N on the phosphorylation of EphA4-FL. (A) 

A representative image showing that CHO-FL or CHO-FL+N cells were incubated 

with different concentrations of ephrin A4 or ephrin A5 ligands. Lysates were 

separated by SDS-PAGE and bands specific for EphA4-FL, EphA4-N and 

phosphorylated EphA4-FL were detected using appropriate antibodies. (Lane 1: 

Untreated CHO-FL, lane 2: CHO-FL treated with 1 µg/ml of ephrinA4, lane 3: CHOg/ml of ephrinA4, lane 3: CHO-

FL treated with 10 µg/ml of ephrinA4, lane 4: Untreated CHOg/ml of ephrinA4, lane 4: Untreated CHO-FL+N, lane 5: CHO-

FL+N treated with 1 µg/ml of ephrinA4, lane 6: CHOg/ml of ephrinA4, lane 6: CHO-FL+N treated with 10 µg/ml of g/ml of 

ephrinA4, lane 7: CHO-FL treated with 1 µg/mg/ml of ephrinA5, lane 8: CHO-FL treated 

with 10 µg/ml of ephrinA5, lane 9: CHOg/ml of ephrinA5, lane 9: CHO-FL+N treated with 1 µg/ml of ephrinA5, lane g/ml of ephrinA5, lane 

10: CHO-FL+N treated with 10 µg/ml of ephrinA5). (B, C) Quantification of band g/ml of ephrinA5). (B, C) Quantification of band 

densities shows that co-expression of EphA4-N with EphA4-FL significantly inhibited 

the phosphorylation level of EphA4-FL induced by ephrin A4 (B) or ephrin A5 (C) at 

either 1 µg/ml or 10 µg/ml (n = 6 biological replicates, Student’s t tests). All values g/ml or 10 µg/ml (n = 6 biological replicates, Student’s t tests). All values g/ml (n = 6 biological replicates, Student’s t tests). All values 

are represented as the mean ± SEM: * p < 0.05, **p • 0.01 0.01, ***p • 0.001, ****p •  0.001, ****p • 

0.0001. Abbreviations: FL, EphA4-FL; N, EphA4-N; FL+N, CHO-FL+N cell line. 

 

Figure 6. RNA expression of EphA4-N and EphA4-FL in the brain and spinal 

cord of SOD1
G93A

 mice in the presymptomatic stage and at the end point of life. 

Comparison in the expression of EphA4-FL in the brain (A) and spinal cord (B) were 

made between SOD1
G93A

 and WT mice, and between presymptomatic stage and end 
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stage of life. (C) The expression of EphA4-N was significantly increased in the brain 

from SOD1
G93A

 mice, compared to WT mice, at both time points. (D) The expression 

of EphA4-N in the spinal cord tissue was the same for SOD1
G93A

 and WT mice at both 

time points. Five mice were used in each group at each time point. Two-way ANOVA 

with Sidak’s post-test; values are represented as mean± SEM; * p < 0.05, **p • 0.01,  0.01, 

***p • 0.001. Abbreviations: Pre, presymptomatic stage (P35); End, end point of life  0.001. Abbreviations: Pre, presymptomatic stage (P35); End, end point of life 

(~P150); WT, WT mice; SOD1, SOD1G93A mice. 
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Table 1. Specific sets of primers were used for RT-PCR. 

mEphA4-N 
Forward 5’-TGCTGGCTACGGAGACTTCA-3’ 

Reverse 5’-GTGCATGCAGAGTCCAGACT-3’ 

mEphA4-C 
Forward 5’-TGAGGCAGAAGCTTGGCTTG-3’ 

Reverse 5’-GTACCCTTCCTCGATGGCTT-3’ 

mPgk1 
Forward 5’-CGGAGGCCCGGCATTCTG-3’ 

Reverse 5’-AGCAGCCTTGATCCTTTGGTTG-3’ 

hEphA4-N 
Forward 5’-GCAGCTGGCTATGGAGACTT-3’ 

Reverse 5’-GAGGAAACTTGGGATGCAGA-3’ 

hEphA4-C 
Forward 5’-AGGCATAAGCTTGGCTTGTT-3’ 

Reverse 5’-AGAAAGAAGCCACCCAGGTT-3’ 

hPgk1 
Forward 5’-GTGTGGGGCGGTAGTGTG-3’ 

Reverse 5’-TTGGGACAGCAGCCTTAATC-3’ 
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Table 2. Specific sets of primers were used in qRT-PCR. 

mEphA4-N 
Forward 5’-TGCTGGCTACGGAGACTTCA-3’ 

Reverse 5’-GTGCATGCAGAGTCCAGACT-3’ 

mEphA4-FL 
Forward 5’-AGCAAAGCGAAACAAGAAGC-3’ 

Reverse 5’- ATGACTGTAAAGCGGCCATC-3’ 

mPgk1 
Forward 5’-CGGAGGCCCGGCATTCTG-3’ 

Reverse 5’-AGCAGCCTTGATCCTTTGGTTG-3’ 

hEphA4-N 
Forward 5’-TCCAAGAGAATACAGGCTCCA-3’ 

Reverse 5’-GAGGAAACTTGGGATGCAGA-3’ 

hEphA4-FL 
Forward 5’-GCCAAACAAGAAGCGGATGA-3’ 

Reverse 5’-TCTTAATGCAGGATGCGTCA-3’ 

hPgk1 
Forward 5’-GTGTGGGGCGGTAGTGTG-3’ 

Reverse 5’-TTGGGACAGCAGCCTTAATC-3’ 
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Highlights 

• Novel isoforms of EphA4 exist in the brain and spinal cord of mice and 
humans. 

• The EphA4-N isoform is expressed on the cell surface and inhibits the 
activation of full-length EphA4 in vitro. 

• EphA4-FL expression in brain & spinal cord of SOD1
G93A

 mice is significantly 
higher than controls in presymptomatic stages. 

 


