166 research outputs found
Interview with Helen Truan
An interview with Helen Truan regarding her experiences in a one-room school house.https://scholars.fhsu.edu/ors/1196/thumbnail.jp
Understanding p300-transcription factor interactions using sequence variation and hybridization
House of Commons Library: Briefing Paper Number 6281, 28 May 2020: Support for Postgraduate Students in England
Thromboresistance Characterization of Extruded Nitric Oxide Releasing Silicone Catheters
Intravascular catheters used in clinical practice can activate platelets, leading to thrombus formation and stagnation of blood flow. Nitric oxide (NO)-releasing polymers have been shown previously to reduce clot formation on a number of blood contacting devices. In this work, trilaminar NO-releasing silicone catheters were fabricated and tested for their thrombogenicity. All catheters had specifications of L = 6 cm, inner diameter = 21 gauge (0.0723 cm), outer diameter = 12 gauge (0.2052 cm), and NO-releasing layer thickness = 200 ± 11 µm. Control and NO-releasing catheters were characterized in vitro for their NO flux and NO release duration by gas phase chemiluminescence measurements. The catheters were then implanted in the right and left internal jugular veins of (N = 6 and average weight = 3 kg) adult male rabbits for 4 hours thrombogenicity testing. Platelet counts and function, methemoglobin (metHb), hemoglobin (Hb), and white cell counts and functional time (defined as patency time of catheter) were monitored as measured outcomes. Nitric oxide-releasing catheters (N = 6) maintained an average flux above (2 ± 0.5) × 10−10 mol/min/cm2 for more than 24 hours, whereas controls showed no NO release. Methemoglobin, Hb, white cell, and platelet counts and platelet function at 4 hours were not significantly different from baseline (α = 0.05). However, clots on controls were visibly larger and prevented blood draws at a significantly (p \u3c 0.05) earlier time (2.3 ± 0.7 hours) into the experiment, whereas all NO-releasing catheters survived the entire 4 hours test period. Results indicate that catheter NO flux levels attenuated thrombus formation in a short-term animal model
How do miniproteins fold?
A high-throughput study yields libraries of miniproteins that help to explain how proteins are stabilized</jats:p
De novo protein design:How do we expand into the universe of possible protein structures?
Protein scientists are paving the way to a new phase in protein design and engineering. Approaches and methods are being developed that could allow the design of proteins beyond the confines of natural protein structures. This possibility of designing entirely new proteins opens new questions: What do we build? How do we build into protein-structure space where there are few, if any, natural structures to guide us? To what uses can the resulting proteins be put? And, what, if anything, does this pursuit tell us about how natural proteins fold, function and evolve? We describe the origins of this emerging area of fully de novo protein design, how it could be developed, where it might lead, and what challenges lie ahead
Local and macroscopic electrostatic interactions in single α-helices
The non-covalent forces that stabilise protein structures are not fully understood. One way to address this is to study equilibria between unfolded states and α-helices in peptides. For these, electrostatic forces are believed to contribute, including interactions between: side chains; the backbone and side chains; and side chains and the helix macrodipole. Here we probe these experimentally using designed peptides. We find that both terminal backbone-side chain and certain side chain-side chain interactions (i.e., local effects between proximal charges, or interatomic contacts) contribute much more to helix stability than side chain-helix macrodipole electrostatics, which are believed to operate at larger distances. This has implications for current descriptions of helix stability, understanding protein folding, and the refinement of force fields for biomolecular modelling and simulations. In addition, it sheds light on the stability of rod-like structures formed by single α-helices that are common in natural proteins including non-muscle myosins
Computational design of water-soluble α-helical barrels
The design of protein sequences that fold into prescribed de novo structures is challenging. General solutions to this problem require geometric descriptions of protein folds and methods to fit sequences to these. The α-helical coiled coils present a promising class of protein for this and offer considerable scope for exploring hitherto unseen structures. For α-helical barrels, which have more than four helices and accessible central channels, many of the possible structures remain unobserved. Here, we combine geometrical considerations, knowledge-based scoring, and atomistic modeling to facilitate the design of new channel-containing α-helical barrels. X-ray crystal structures of the resulting designs match predicted in silico models. Furthermore, the observed channels are chemically defined and have diameters related to oligomer state, which present routes to design protein function
- …