787 research outputs found
Dynamic reorganization of vortex matter into partially disordered lattices
We report structural evidence of dynamic reorganization in vortex matter in
clean NbSe by joint small angle neutron scattering and ac-susceptibility
measurements. The application of oscillatory forces in a transitional region
near the order-disorder transition results in robust bulk vortex lattice
configurations with an intermediate degree of disorder. These
dynamically-originated configurations correlate with intermediate pinning
responses previously observed, resolving a long standing debate regarding the
origin of such responses.Comment: 9 pages, 7 figures. To be published in Physical Review Letter
Multilayer Thermionic Refrigerator and Generator
A new method of refrigeration is proposed. Cooling is obtained by thermionic
emission of electrons over periodic barriers in a multilayer geometry. These
could be either Schottky barriers between metals and semiconductors or else
barriers in a semiconductor superlattice. The same device is an efficient power
generator. A complete theory is provided.Comment: 17 pages with 5 postscript figures, submitted to J. Appl. Phy
Kernel PCA in nonlinear visualization of a healthy and a faulty planetary gearbox data
PCA (Principal Component Analysis) is a powerful method for investigating the dimensionality and extracting structure from multi-dimensional data, however it extracts only linear projections. More general projections – accounting for possible non-linearities among the observed variables – can be obtained using kPCA (Kernel PCA), that performs the same task, however working with an extended feature set. We consider planetary gearbox data given as two 15-dimensional data sets, one coming from a healthy and the other from a faulty planetary gearbox. For these data both the PCA (with 15 variables) and the kPCA (using indirectly 500 variables) is carried out. It appears that the investigated PC-s are to some extent similar; however, the first three kernel PC-s show the data structure with more details
Fatigue behavior of hybrid continuous-discontinuous fiber-reinforced sheet molding compound composites under application-related loading conditions
Hybrid continuous-discontinuous sheet molding compound (SMC) composites are considered suitable candidates for structural automotive applications, due to their high mass-specific mechanical properties combined with high geometrical flexibility and low costs. Since structural automotive parts are subject to repeated loading, profound knowledge of their fatigue behavior is required. This paper presents an experimental study on the bending fatigue behavior of hybrid SMC with discontinuous glass fibers in the core and unidirectional continuous carbon fibers in the face layers. Effects of hybridization on the S-N behavior and stiffness degradation have been analyzed in constant amplitude fatigue tests under 3-point bending load at different temperatures and frequencies. Microscopic investigations on polished specimen edges were used to study the damage behavior. The ultimate flexural strength at quasi-static (UFS) and fatigue strain rate (UFS) of the hybrid composite was 54 % and 59 % higher than that of discontinuous SMC, respectively. In contrast, the flexural fatigue strength at 2.6⋅10S cycles increased by 258 %. The relative stiffness degradation of the hybrid composites was smaller during most of their fatigue lives due to the continuous carbon fiber reinforcement. The carbon fiber ply on the compression loaded side was the first ply to fail. Fatigue stress significantly decreased at 80 °C due to early kinking of the continuous carbon fiber-reinforced ply on the compression loaded side. Variation of frequency had no significant effect on the fatigue behavior of both discontinuous and continuous-discontinuous SMC
- …