506 research outputs found

    Multilayer Thermionic Refrigerator and Generator

    Full text link
    A new method of refrigeration is proposed. Cooling is obtained by thermionic emission of electrons over periodic barriers in a multilayer geometry. These could be either Schottky barriers between metals and semiconductors or else barriers in a semiconductor superlattice. The same device is an efficient power generator. A complete theory is provided.Comment: 17 pages with 5 postscript figures, submitted to J. Appl. Phy

    Magnetic Breakdown in the electron-doped cuprate superconductor Nd2−x_{2-x}Cex_xCuO4_4: the reconstructed Fermi surface survives in the strongly overdoped regime

    Full text link
    We report on semiclassical angle-dependent magnetoresistance oscillations (AMRO) and the Shubnikov-de Haas effect in the electron-overdoped cuprate superconductor Nd2−x_{2-x}Cex_xCuO4_4. Our data provide convincing evidence for magnetic breakdown in the system. This shows that a reconstructed multiply-connected Fermi surface persists, at least at strong magnetic fields, up to the highest doping level of the superconducting regime. Our results suggest an intimate relation between translational symmetry breaking and the superconducting pairing in the electron-doped cuprate superconductors.Comment: 5 pages, 4 figures, submitted to PR

    Fermi-surface topology of the iron pnictide LaFe2_2P2_2

    Full text link
    We report on a comprehensive de Haas--van Alphen (dHvA) study of the iron pnictide LaFe2_2P2_2. Our extensive density-functional band-structure calculations can well explain the measured angular-dependent dHvA frequencies. As salient feature, we observe only one quasi-two-dimensional Fermi-surface sheet, i.e., a hole-like Fermi-surface cylinder around Γ\Gamma, essential for s±s_\pm pairing, is missing. In spite of considerable mass enhancements due to many-body effects, LaFe2_2P2_2 shows no superconductivity. This is likely caused by the absence of any nesting between electron and hole bands.Comment: 5 pages, 4 figure

    Dimensionality dependent electronic structure of the exfoliated van der Waals antiferromagnet NiPS3_3

    Full text link
    Resonant Inelastic X-ray Scattering (RIXS) was used to measure the local electronic structure in few-layer exfoliated flakes of the van der Waals antiferromagnet NiPS3_3. The resulting spectra show a systematic softening and broadening of NiS6NiS_6 multiplet excitations with decreasing layer count from the bulk to three atomic layers (3L). These trends are driven by a decrease in the transition metal-ligand and ligand-ligand hopping integrals, and in the charge-transfer energy: Δ\Delta = 0.60 eV in the bulk and 0.22 eV in 3L NiPS3_3. Relevant intralayer magnetic exchange integrals computed from the electronic parameters exhibit a systematic decrease in the average interaction strength with thickness and place 2D NiPS3_3 close to the phase boundary between stripy and spiral antiferromagnetic order, which may explain the apparent vanishing of long-range order in the 2D limit. This study explicitly demonstrates the influence of interinterlayer electronic interactions on intraintralayer ones in insulating magnets. As a consequence, the magnetic Hamiltonian in few-layer insulating magnets can be significantly different from that in the bulk.Comment: 5 pages, 4 figures; additional 9 pages and 13 figures of supplementary informatio

    HFM EXED The High Magnetic Field Facility for Neutron Scattering at BER II

    Get PDF
    An overview of the high magnetic field facility for neutron scattering at Helmholtz Zentrum Berlin HZB is given. The facility enables elastic and inelastic neutron scattering experiments in continuous magnetic fields up to 26.3 T combined with temperatures down to 0.6
    • …
    corecore